Ключ к знанию

Кислородный датчик лямбда зонд


Про лямбда-зонд. — DRIVE2

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах, состав которых зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Информация, которую выдает датчик в виде напряжения (или изменения сопротивления), используется электронным блоком управления впрыском (или карбюратором) для корректировки количества подаваемого топлива.
Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их "дожигание" в каталитическом нейтрализаторе.
Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха — отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда < 1 (недостаток воздуха), смесь называют богатой, при лямбда >1 (избыток воздуха) смесь называют бедной.
Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.

Общие сведения

В справочной литературе датчик может называться по-разному: кислородный датчик, регулятор "лямбда", лямбда-зонд, датчик концентрации кислорода в отработавших газах. Кислородные датчики бывают двух типов: электрохимические и резистивные. Первый тип датчиков работает по принципу элемента, вырабатывающего электрический ток. Второй — работает, как резистор, изменяя свое сопротивление от условий среды, в которой находится.
Наибольшее распространение в настоящее время получили электрохимические датчики кислорода. В них используется свойство диоксида циркония создавать разность электрических потенциалов (напряжение) при разной концентрации кислорода (в отработавших газах и окружающем воздухе).
При нормальной работе системы подачи топлива напряжение, вырабатываемое датчиком кислорода, может изменяться несколько раз в секунду. Это позволяет приготавливать и поддерживать необходимый состав топливной смеси практически на любом режиме работы двигателя.

Устройство датчика кислорода.

Устройство датчика кислорода:
1- металлический корпус с резьбой.
2 — уплотнительное кольцо.c 3 — токосъемник электрического сигнала.
4 — керамический изолятор.
5 — проводка.
6 — манжета проводов уплотнительная.
7 — токопроводящий контакт цепи подогрева.
8 — наружный защитный экран с отверстием для атмосферного воздуха.
9 — подогрев.
10 — наконечник из керамики.
11 — защитный экран с отверстием для отработавших газов.

Основная часть датчика — керамический наконечник, сделанный на основе диоксида циркония, на внутреннюю и наружную поверхности которого методом напыления наносится платина. Соединение наконечника и корпуса выполнено полностью герметичным во избежание попадания отработавших газов во внутреннюю полость датчика, сообщающуюся с атмосферой. Керамический наконечник находится в потоке отработавших газов, поступающих через отверстия в защитном экране. Эффективная работа датчика возможна при температуре не ниже 300-350'С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, представляющим из себя керамический стержень со спиралью накаливания внутри. Датчики кислорода с различным количеством проводов: провод сигнала, провод "массы" сигнала, провод питания подогрева, провод "массы" подогрева. Датчики без нагревателя могут иметь один, или два сигнальных провода, датчики со встроенным электрическим нагревателем — три или четыре провода. Как правило, провода светлых цветов относятся к нагревателю, а темных — к сигнальному проводу. Все элементы датчика кислорода изготовлены из жаростойких материалов, так как его рабочая температура может достигать 950°С. Выходящие провода имеют термостойкую изоляцию.

Место установки датчика кислорода.

В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами — перед нейтрализатором.
В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда устанавливается два кислородных датчика — до нейтрализатора и после него.

Маркировка датчиков:

На каждом датчике кислорода, как правило, обозначено: наименование страны-изготовителя; наименование и (или) товарный знак изготовителя; условное обозначение типа.

Ресурс и периодичность контроля работоспособности

Датчики кислорода имеют неразборную конструкцию и не требуют обслуживания. Ресурс электрохимических датчиков кислорода составляет от 60 до 80 тыс. км пробега автомобиля при соблюдении условий эксплуатации, нарушение которых резко сокращает срок службы. Рекомендуется проверять датчики кислорода при каждом техническом обслуживании автомобиля.

Причины преждевременного выхода из строя датчика кислорода

1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д.
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
8. Негерметичность в выпускной системе.

Возможные признаки неисправности датчика кислорода
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива.
3. Ухудшение динамических характеристик автомобиля.
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения.

Правила снятия и установки датчика

1. Демонтаж датчика, во избежание повреждений, производят только на холодном двигателе, перед этим отсоединяют провода датчика (при выключенном зажигании).
2. Перед заменой датчика необходимо проверить его маркировку, которая должна соответствовать указанной в инструкции по эксплуатации автомобиля.
3. Производят внешний осмотр, чтобы:
убедиться в отсутствии механических повреждений;
проверить наличие уплотнительного кольца; o проверить наличие на резьбовой части специальной противопригарной смазки.
4. Заворачивают от руки датчик кислорода до упора и затягивают с усилием 3,5-4,5 кгм. Соединение должно быть герметичным.
5. Соединяют электрический разъем (разъемы).
6. Проверяют работоспособность по контролируемым параметрам.

В некоторых случаях датчик крепится к выпускному трубопроводу с помощью специальной пластины. Между пластиной и выпускным трубопроводом должна находиться специальная герметизирующая прокладка.

Основные контролируемые параметры

Проверка параметров датчика кислорода осуществляется при достижении им рабочей температуры (350+50°С) с использованием газоанализатора, осциллографа, цифрового вольтметра и омметра.

Контролируются следующие параметры:

1. при значении Лямбда=0,9 (обогащенная горючая смесь) напряжение на сигнальном проводе должно быть не менее 0,65 В;
2. при значении лямбда=1,1 (обедненная горючая смесь) напряжение на сигнальном выводе должно быть не более 0,25 В;
3. время срабатывания при обедненной горючей смеси — не более 250 мс;
4. время срабатывания при обогащенной горючей смеси — не более 450 мс;
5. сопротивление при температуре 350 + 50 "С не более 10кОм.

Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!

Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.

Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трех

www.drive2.ru

Про лямбда зонд — DRIVE2

Датчик концентрации кислорода

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах, состав которых зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Информация, которую выдает датчик в виде напряжения (или изменения сопротивления), используется электронным блоком управления впрыском (или карбюратором) для корректировки количества подаваемого топлива.
Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их "дожигание" в каталитическом нейтрализаторе.
Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха — отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда < 1 (недостаток воздуха), смесь называют богатой, при лямбда >1 (избыток воздуха) смесь называют бедной.
Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.

Общие сведения

В справочной литературе датчик может называться по-разному: кислородный датчик, регулятор "лямбда", лямбда-зонд, датчик концентрации кислорода в отработавших газах. Кислородные датчики бывают двух типов: электрохимические и резистивные. Первый тип датчиков работает по принципу элемента, вырабатывающего электрический ток. Второй — работает, как резистор, изменяя свое сопротивление от условий среды, в которой находится.
Наибольшее распространение в настоящее время получили электрохимические датчики кислорода. В них используется свойство диоксида циркония создавать разность электрических потенциалов (напряжение) при разной концентрации кислорода (в отработавших газах и окружающем воздухе).
При нормальной работе системы подачи топлива напряжение, вырабатываемое датчиком кислорода, может изменяться несколько раз в секунду. Это позволяет приготавливать и поддерживать необходимый состав топливной смеси практически на любом режиме работы двигателя.

Устройство датчика кислорода.

Устройство датчика кислорода:
1- металлический корпус с резьбой.
2 — уплотнительное кольцо.c 3 — токосъемник электрического сигнала.
4 — керамический изолятор.
5 — проводка.
6 — манжета проводов уплотнительная.
7 — токопроводящий контакт цепи подогрева.
8 — наружный защитный экран с отверстием для атмосферного воздуха.
9 — подогрев.
10 — наконечник из керамики.
11 — защитный экран с отверстием для отработавших газов.

Основная часть датчика — керамический наконечник, сделанный на основе диоксида циркония, на внутреннюю и наружную поверхности которого методом напыления наносится платина. Соединение наконечника и корпуса выполнено полностью герметичным во избежание попадания отработавших газов во внутреннюю полость датчика, сообщающуюся с атмосферой. Керамический наконечник находится в потоке отработавших газов, поступающих через отверстия в защитном экране. Эффективная работа датчика возможна при температуре не ниже 300-350'С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, представляющим из себя керамический стержень со спиралью накаливания внутри. Датчики кислорода с различным количеством проводов: провод сигнала, провод "массы" сигнала, провод питания подогрева, провод "массы" подогрева. Датчики без нагревателя могут иметь один, или два сигнальных провода, датчики со встроенным электрическим нагревателем — три или четыре провода. Как правило, провода светлых цветов относятся к нагревателю, а темных — к сигнальному проводу. Все элементы датчика кислорода изготовлены из жаростойких материалов, так как его рабочая температура может достигать 950°С. Выходящие провода имеют термостойкую изоляцию.

Место установки датчика кислорода.

В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами — перед нейтрализатором.
В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда устанавливается два кислородных датчика — до нейтрализатора и после него.

Маркировка датчиков:

На каждом датчике кислорода, как правило, обозначено: наименование страны-изготовителя; наименование и (или) товарный знак изготовителя; условное обозначение типа.

Ресурс и периодичность контроля работоспособности

Датчики кислорода имеют неразборную конструкцию и не требуют обслуживания. Ресурс электрохимических датчиков кислорода составляет от 60 до 80 тыс. км пробега автомобиля при соблюдении условий эксплуатации, нарушение которых резко сокращает срок службы. Рекомендуется проверять датчики кислорода при каждом техническом обслуживании автомобиля.

Причины преждевременного выхода из строя датчика кислорода

1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д.
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
8. Негерметичность в выпускной системе.

Возможные признаки неисправности датчика кислорода
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива.
3. Ухудшение динамических характеристик автомобиля.
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения.

Правила снятия и установки датчика

1. Демонтаж датчика, во избежание повреждений, производят только на холодном двигателе, перед этим отсоединяют провода датчика (при выключенном зажигании).
2. Перед заменой датчика необходимо проверить его маркировку, которая должна соответствовать указанной в инструкции по эксплуатации автомобиля.
3. Производят внешний осмотр, чтобы:
убедиться в отсутствии механических повреждений;
проверить наличие уплотнительного кольца; o проверить наличие на резьбовой части специальной противопригарной смазки.
4. Заворачивают от руки датчик кислорода до упора и затягивают с усилием 3,5-4,5 кгм. Соединение должно быть герметичным.
5. Соединяют электрический разъем (разъемы).
6. Проверяют работоспособность по контролируемым параметрам.

В некоторых случаях датчик крепится к выпускному трубопроводу с помощью специальной пластины. Между пластиной и выпускным трубопроводом должна находиться специальная герметизирующая прокладка.

Основные контролируемые параметры

Проверка параметров датчика кислорода осуществляется при достижении им рабочей температуры (350+50°С) с использованием газоанализатора, осциллографа, цифрового вольтметра и омметра.

Контролируются следующие параметры:

1. при значении Лямбда=0,9 (обогащенная горючая смесь) напряжение на сигнальном проводе должно быть не менее 0,65 В;
2. при значении лямбда=1,1 (обедненная горючая смесь) напряжение на сигнальном выводе должно быть не более 0,25 В;
3. время срабатывания при обедненной горючей смеси — не более 250 мс;
4. время срабатывания при обогащенной горючей смеси — не более 450 мс;
5. сопротивление при температуре 350 + 50 "С не более 10кОм.

Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!

Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс на

www.drive2.ru

Что такое лямбда-зонд или кислородный датчик

Согласно строгому определению, лямбда-зонд или кислородный датчик – это устройство, оценивающее концентрацию кислорода в отработавших выхлопных газах. Казалось бы, зачем "мозгам" двигателя знать, что вылетает наружу? Очень просто – чтобы приготовить оптимальную топливно-воздушную смесь и снизить токсичность выхлопных газов.

При чем тут лямбда?

Название "лямбда-зонд" не случайно происходит от греческой литеры "лямбда" (λ) – в автомобилестроении она обозначает коэффициент избытка воздуха в топливно-воздушной смеси (соотношении топлива и воздуха). Когда ее состав оптимален – а таким принято считать 14,7 кг воздуха к 1 кг топлива – то коэффициент избытка воздуха равен единице, а смесь считается стехиометрической и обеспечивает полное сгорание топлива. В зависимости от коэффициента существует три вида топливно-воздушной смеси – это упомянутая выше оптимальная стехиометрическая, "богатая" с избытком топлива (в данном случае λ < 1) и "бедная" с не оптимально большим содержанием воздуха (λ > 1).

Если датчик увидел наличие свободного кислорода, не вступившего в реакцию, то это означает, что топлива должно быть больше. В противном случае, когда воздуха наоборот мало, требуется сократить подачу горючего.

Двигатели способны работать не только на оптимальной топливно-воздушной смеси, но также на "богатой" или "бедной" – все зависит от целей и задач, к которым относится динамика, экономичность и снижение вредных выбросов. Наименьшее потребление топлива и чистота выхлопа будет при лямбде, равной единице, а на обогащенной смеси двигатель будет развивать оптимальную мощность. Отметим, что заметные отклонения от стехиометрической смеси могут привести к поломкам как выпускной системы, так и двигателя. Раз уж зашел разговор об идеальной топливно-воздушной пропорции, то следует отметить следующее. Двигатель нечасто работает на стехиометрической смеси, но при этом постоянно стремиться к ней. Удерживать "идеальный" состав длительное время невозможно, поскольку на смесеобразование влияет масса факторов. Таким образом, электронный блок управления постоянно регулирует его, удерживая в условно оптимальных рамках.

Где расположен кислородный датчик

Лямбда-зонд находится в выпускном тракте (проще говоря, он вкручен в систему) и соседствует с каталитическим нейтрализатором. У современных автомобилей кислородный датчик установлен как перед ним (называется верхний лямбда-зонд), так и на выходе катализатора (нижний лямбда-зонд). Конструктивно они идентичны, но выполняют несколько разные замеры. Так, верхний датчик отслеживает, сколько кислорода содержится в отработавших газах. Сигнал с него отправляется в электронный управляющий блок двигателя и тот считывает характеристики топливно-воздушной смеси – проще говоря, понимает, стехиометрическая ли она, обогащенная или обедненная. В зависимости от результата, происходит корректировка объемов подаваемого в цилиндры топлива для приготовления смеси с оптимальным составом. Что касается нижнего кислородного датчика, то он нужен для контроля работы каталитического нейтрализатора и более точной корректировки. Отметим, что в стародавние времена гораздо менее строгих экологических норм нижние лямбда-зонды не применялись.

Как устроен кислородный датчик

Наиболее популярны устройства на основе диоксида циркония. Выглядят они как металлический стержень, конец которого скруглен, с проводом. Непосредственно с выхлопными газами контактирует наружный электрод (для этого в защитном кожухе предусмотрены отверстия), в то время как с атмосферой взаимодействует внутренний. Между ними как раз и находится двуокись циркония или твердый электролит. Оба электрода имеют платиновое напыление. Есть и нагревательный элемент, который призван как можно скорее выводить лямбда-зонд на высокую рабочую температуру в районе 300 °С.

Неисправности кислородного датчика

Датчик работает в крайне неблагоприятных тяжелых условиях, находясь в потоке горячих отработавших газов. Водитель узнает о неисправности и дело не в загоревшейся контрольной лампе Check Engine на приборной панели. Выход лямбда-зонда из строя сопровождается увеличением расхода топлива, неустойчивой работой двигателя на холостых оборотах и снижением мощности, а также характерным "бензиновым" запахом из выхлопной трубы – резким и "токсичным". В общем, автомобиль подаст сигнал.

Причины неисправностей кислородного датчика редко провоцируются механическими повреждениями – все-таки он сравнительно неплохо защищен. Наиболее часто лямбда-зонд требует замены из-за износа в процессе эксплуатации, либо загрязнения или обрыва электрической цепи нагревательного элемента. Прикончить датчик может некачественное топливо, технические проблемы, например, сгорание масла из-за плохого состояния маслосъемных колец или антифриз в топливе. Правда, в этом случае проблемы с лямбда-зондом будут наименьшей из сложностей. Бывает, что он работает с перебоями из-за электрического питания и окисления контактов, что отражается на топливно-воздушной смеси и, соответственно, поведении автомобиля.

Можно ли заменить самостоятельно

Как видите, неисправность кислородного датчика не только делает езду на автомобиле проблематичной, но в ряде ситуаций способна повлечь за собой другие поломки. Поменять датчик можно самостоятельно, если до него получиться добраться. Перед этим следует обесточить автомобиль и снять с датчика колодку. Дальше – самое интересное: далеко не всегда удается выкрутить прикипевший лямбда-зонд с первого раза, поэтому следует проявить осторожность, чтобы не сломать. Если вывернуть удалось, то не забудьте перед установкой нового очистить резьбу в выпускной системе.

autorambler.ru

Вся правда про лямбда-зонд — DRIVE2

Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!

Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.
Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный ЛЗ добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток — токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен четырехпроводный лямбда-зонд — у него все провода служат для своих целей — два на подогрев, а два — сигнальные. При этом вкручивать его можно так как заблагорассудится.

Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.

Как понять насколько работоспособен датчик? Ввобще-то для этого потребуется осциллограф. Ну или специальный мотор-тестер, на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе ЛЗ. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек. Это усредненные данные. В реальной жизни для оценки состояния лямбда-зонда необходимо провести цикл измерений. Не имея под рукой мотор-тестера или осциллографа определить неисправность лямбда-зонда можно пользуясь бортовой системой диагностики, существующей в контроллере системы впрыска, которая фиксирует в своей памяти случаи, когда сигнал с ЛЗ выходил за определенные пределы. Фиксация неисправностей производится при помощи запоминания специальных кодов, которые могут быть считаны в тестовом режиме. Однако не всегда можно с уверенностью поставить четкий диагноз о неисправности лямбда-зонда пользуясь только бортовой системой диагностики. Об этом стоит помнить! Не поленитесь съездить на диагностику.

На что менять? Самое лучшее — это менять датчик на такой, какой стоит в списке запчастей для Вашего автомобиля. В таком случае гарантия работоспособности системы после замены будет 100%. Но не всегда по финансовым соображениям выгодно гоняться за оригинальными каталожными датчиками. Ведь тот же Bosch выпускает лямбда-датчики и для других моделей. И они по принципу работы одинаковы, а внешне очень похожи. Ну и что, что каталожный номер будет стоять другой. При правильной установке и грамотном подборе можно съэкономить весьма кругленькую сумму, купив "жигулевский" датчик от фирмы Bosch за 10-20$ вместо точно такого же по сути, но фирменного за 100$ и работать он будет ничуть не хуже. Найти ЛЗ в магазине сейчас можно все чаще и чаще, а значит они будут дешеветь.

Порядок замены ЛЗ таков:

1. Отсоединить кабель ЛЗ от электропроводки.

2. Снять старый ЛЗ используя подходящий ключ. Лучше если это будет высокая головка или накидной — так вероятность повредить грани приржавленного ЛЗ будет меньше, но у меня нормально открутился на работающем моторе накидным ключом. Снимать датчик стоит при работающем двигателе. Т.е. пока трубопровод и датчик горячий. В противном случае есть вероятность отломать датчик или сорвать резьбу, т.к. металл сжимается и выворачивать очень трудно. Выкручивайте датчик до тех пор, пока из отверстия не пойдет дымок. Потом глушите машину и откручивайте совсем.

3. Отрезать аккуратно провода от старого ЛЗ и соединить с проводами нового, которые тоже придется отрезать от колодки. Схема соединения зависит от того — какой ЛЗ Вы купили. Но обычные цвета и предназначение проводов даны чуть выше, на картинках.

4. Следует иметь ввиду, что если штатный лямбда-зонд трехпроводный, то у него провода подписаны (см. на разъеме) "А" и "Б" — подогрев, "С" — сигнальный. Провода подогрева белого цвета (полярность не имеет значения), а сигнальный провод — черный.

5. Четвертый (незадействованный ранее) провод стоит вывести и надежно прикрутить к массе двигателя. Проверить также соединение двигателя с массой корпуса. Я прикрутил его под болт крепления главного тормозного цилиндра (в торце кронштейн) — мне так показалось удобнее.

6. Вкрутить новый ЛЗ. Если он четырехпроводный, то токопроводящая смазка не нужна. Достаточно графитовой — для смазки резьбовых соединений.

7. Соединение проводов не стоит осуществлять скруткой проводов — этот вариант ненадежен и долго не проживет. Самое лучшее — это спаять все положенные провода и хорошенько заизолировать. Паять провода стоит до того, как ЛЗ установлен в трубе, т.е. на столе.

8. После замены рекомендую обнулить память контроллера путем снимания на несколько секунд (-)клеммы с аккумулятора. Только подумайте предварительно — не отключатся ли у вас какие нибудь электроприборы типа магнитол, CD-чейнджеров и пр. и не встанут ли они после этого на код. Это важно.
Источник:avto-remont.com/

www.drive2.ru

Все о датчике кислорода или Лямбда-зонде — DRIVE2

Лямбда-зонд устанавливается в потоке отработавших газов двигателя и измеряет уровень содержания кислорода в них. Анализируя осциллограмму напряжения выходного сигнала лямбда-зонда на различных режимах работы двигателя, можно оценить как исправность самого датчика, так и исправность системы управления двигателем в целом.

Признаком неисправности лямбда-зонда является повышенный расход топлива, ухудшение динамики автомобиля, ощутимое понижение мощности двигателя, возможна его неустойчивая работа на холостом ходу или «качание» оборотов холостого хода. Лямбда-зонд сравнивает содержание кислорода в выхлопных газах и в окружающем воздухе и представляет результат этого сравнения в форме аналогового сигнала. Применяются двухуровневые зонды, чувствительный элемент которых выполнен из оксида циркония либо из оксида титана, но сейчас им на смену приходят широкополосные лямбда-зонды.

Лямбда-зонд на основе оксида циркония Лямбда-зонд на основе оксида циркония генерирует выходной сигнал напряжением от 40–100 mV до 0.7–1.0 V. Размах напряжения выходного сигнала исправного лямбда-зонда достигает 950 mV. При пониженном содержании кислорода в отработавших газах, вызванном работой двигателя на обогащённой топливовоздушной смеси, датчик генерирует сигнал высокого уровня напряжением 0.65–1 V. При повышенном содержании кислорода (обеднённая топливная смесь) датчик генерирует сигнал низкого уровня напряжением 40–50 mV. Исправный лямбда-зонд начинает работать только после прогрева чувствительного элемента до температуры выше 350°С, когда его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В блоках управления двигателем большинства производителей опорное напряжение равно 450 mV. Такой блок управления двигателем считает лямбда зонд готовым к работе только после того как вследствие прогрева, датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150 – 250 mV.

Лямбда-зонд на основе оксида титана Напряжение выходного сигнала лямбда-зонда на основе оксида титана колеблется в диапазоне от 10–100 mV до 4–5 V. На изменение состава выхлопных газов такой зонд реагирует изменением своего электрического сопротивления. Сопротивление датчика высокое при низком содержании кислорода в отработавших газах (богатая смесь) и резко снижается при обеднении топливовоздушной смеси. За счёт этого датчик шунтирует поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением опорное напряжение 5 V. Выходной сигнал лямбда-зонда на основе оксида титана значительно быстрее реагирует на изменения уровня содержания кислорода в отработавших газах по сравнению со скоростью реакции датчика на основе оксида циркония.

Широкополосный лямбда-зонд Выходной сигнал широкополосного лямбда-зонда в отличие от двухуровневых зондов несёт сведения не только о направлении отклонения состава рабочей смеси от стехиометрического, но и о его численном значении. Анализируя уровень выходного сигнала широкополосного лямбда-зонда, блок управления двигателем рассчитывает численное значение коэффициента отклонения состава рабочей смеси от стехиометрического состава, что, по сути, является коэффициентом ? (лямбда). Выходное напряжение чувствительного элемента зонда изменяется в зависимости от уровня содержания кислорода в отработавших газах и от величины и полярности электрического тока, протекающего по кислородному насосу зонда. Блок управления двигателем генерирует и подаёт на кислородный насос зонда электрический ток, величина и полярность которого обеспечивает поддержание выходного напряжения чувствительного элемента зонда на заданном уровне. В электрическую цепь кислородного насоса включен измерительный резистор, падение напряжения на котором и является мерой уровня содержания кислорода в отработавших газах.

www.drive2.ru

Датчик кислорода:назначение,виды,устройство,фото,принцип работы | АВТОМАШИНЫ

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Содержание статьи

  • Типы датчиков кислорода
  • Циркониевый
  • Титановый
  • Широкополосный
  • Основные положения и функции Кислородного датчика : Теория.
  • Конструкция и принцип работы кислородного датчика
  • Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):
  • Распространённые причины неисправностей лямбда зонда и способы их устранения
  • Электронная проверка лямбда зонда
  • Замена лямбда зонда
  • Вопрос — ответ
    • Устройство и принцип работы современного гидротрансформатора:описание,фото
    • Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
    • Датчик детонации:описание,виды,устройство,принцип работы
    • Вариатор:описание,фото,принцип работы,устройство,виды

Типы датчиков кислорода

Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.

При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.

Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.

Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

  • Измерительной;
  • Насосной.

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Основные положения и функции Кислородного датчика :
Теория.

Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.

Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля.

Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Конструкция и принцип работы кислородного датчика

Конструкция кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод — осуществляет контакт с выхлопными газами.
  • Внутренний электрод — контактирует с атмосферой.
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит — расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов.
Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В).

В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения.

Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Электронная проверка лямбда зонда

Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.

Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.

Замена лямбда зонда

В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.

Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.

Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.

Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.

Вопрос — ответ

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.

B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.

При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).

ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

Устройство и принцип работы современного гидротрансформатора:описание,фото
Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
Датчик детонации:описание,виды,устройство,принцип работы
Вариатор:описание,фото,принцип работы,устройство,виды

ПОХОЖИЕ СТАТЬИ:

  • 7 Самых популярных кроссоверов в сегменте продаж (скидки)
  • Как выбрать автосервис: описание,фото
  • HanTeng Red 01 — интересная электрическая концепция, несмотря на решетку для терки сыра
  • 2018 Porsche 911 Carrera T- с ценой от 102 100 долл США.
  • Проверка автомобиля перед покупкой — (кузов двигатель окрас подвеска)
  • Как проходят краш-тесты автомобилей в Германии
  • Toyo Snowprox S943: популярная модель для украинских автолюбителей
  • Тонировка авто: виды пленок и как наклеить самому
  • Как купить летние покрышки?
  • Автокредит или лизинг: что выбрать?
  • toyota urban cruiser: технические характеристики,цена,габариты,фото
  • Что такое газораспределительный механизм в автомобиле?
  • 2017 Mercedes-Benz GLC: обзор,описание,технические характеристики,фото,видео,цена.
  • BMW X4 M40I 2016-2017: обзор,описание,характеристики,комплектации,цена,фото,видео.
  • Бмв е92 технические характеристики,тюнинг,отзывы,фото,видео.

seite1.ru

Неисправность датчика кислорода. Признаки и причины

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Содержание:

Неисправность датчика кислорода

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

  • Ухудшение тяги и снижение динамических характеристик автомобиля.
  • Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
  • Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
  • Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

  • Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
  • Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
  • Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
  • Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
  • Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
  • Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
  • Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
  • Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
  • Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.

Процедура по восстановлению выполняется по следующему алгоритму:

  • Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
  • Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
  • Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

  • Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
  • Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
  • Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Спрашивайте в комментариях. Ответим обязательно!

etlib.ru

Лямбда-зонд — DRIVE2

Лямбда-зонд (кислородный датчик) — это датчик кислорода, расположенный в выпускном коллекторе двигателя. Показания данного прибора дают возможность электронной системе управления регулировать правильное соотношение воздуха и бензина в камерах сгорания. В случае поступления бедной или наоборот, чрезмерно обогащенной топливной смеси, электронный блок исправляет ее структуру, учитывая показания датчика лямбда зонда. Для сгорания 1 кг топливной смеси требуется около 14.7 кг воздуха. Работа лямбда зонда в системе топливной подачи — очень важна, поэтому его работоспособность напрямую влияет на стабильную работу двигателя автомобиля. Поверка работоспособности устройства очень важна, но перед тем, как выполнить проверку лямбда зонда, необходимо изучить его устройство и принцип действия, так же как и перед тем, как проверить катушку зажигания.

Датчик концентрации кислорода, так еще называют лямбда зонд, состоит из следующих элементов:

Металлический корпус с резьбой для крепления.
Кольцо уплотняющее.
Токосъемник электрического сигнала.
Изолятор керамический.
Проводка.
Манжета для уплотнения проводов.
Токопроводящий контакт цепи подогрева.
Наружная защитная оболочка с отверстием для циркуляции воздуха.
Резервуар со спиралью накаливания.
Керамический наконечник.
Защитный щиток с отверстием для выпуска отработавших газов.
Все детали лямбда зонда изготовлены из материалов, стойких к высоким температурам, так как рабочая температура датчика достаточно высока, и перегрев им не страшен, тогда, как перегрев двигателя последствия имеет часто плачевные.

Датчики лямбда зонда могут иметь от одного до четырех проводов, и название, соответственно, носят одно-, двух-, трех- и четырехпроводных датчиков.

К выходу из строя кислородного датчика могут привести нарушения в уходе за внутренними деталями автомобиля и другие факторы, например:

очистка корпуса средствами, не предназначенными для этого;
попадание на корпус охлаждающей, тормозной жидкости;
чрезмерное содержание в топливе свинца;
перегрев корпуса датчика, вызванный неочищенной топливной смесью. Попадание бензина с высокой концентрацией загрязнений может быть вызвано неисправностью регулятора давления топлива, температурного датчика охлаждающей жидкости или засоренного фильтра очистки топлива.
Неисправности лямбда зонда служат причиной следующих ощутимых проблем в поведении автомобиля:

увеличение потребности в топливе;
рывки автомобиля;
нестабильная работа двигателя;
нарушение работы катализатора;
нарушение норм токсичности.
Именно поэтому за работой датчика кислорода в выхлопных газах необходимо тщательно следить, проверять его состояние хотя бы через каждые 5000-10000 км., особенно перед процедурой контроля на токсичность выхлопов.
Лямбда зонд: проверка.

Чтобы проверить работоспособность кислородного датчика, вам потребуются: заводская инструкция, которая подскажет, где находится лямбда зонд, осциллограф и цифровой вольтметр. Это основные вспомогательные инструменты. Двигатель на время проверки прибора следует прогреть. Как проверить лямбда зонд самостоятельно? Это так же просто, как и промывка инжектора.

Изучите инструкцию производителя на предмет основных параметров кислородного датчика. Проверьте показатели, на которые имеет влияние нестабильная работа лямбда зонда: напряжение бортовой сети, опережение зажигания, работа системы подачи топлива. Также обратите внимание на внешний вид механизмов, в частности на наличие или отсутствие механических повреждений корпуса и проводки.
Загляните в моторный отсек, и найдите лямбда зонд. Осмотрите его на предмет внешних загрязнений. Если наконечник лямбда зонда укрыт слоем сажи, свинца или бело-серым налетом, то, скорее всего, его нужно будет заменить. Поражение прибора отложениями вызвано некачественным составом топлива. Если наконечник датчика чист, продолжайте проверку дальше.
Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 Вт, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 Вт.
Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 Вт и ниже.
Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 Вт. Другое значение свидетельствует о выходе из строя лямбда зонда.
Правильный демонтаж и установка нового датчика лямбда зонда.

Первым делом отсоедините провод датчика от электропроводки. Проводите процедуру при холодном двигателе и выключенном зажигании. Для замены старого прибора используйте датчик с той же маркировкой, что и предыдущий.
С помощью подходящего ключа открутите старый датчик. Лучше всего снимать прибор с включенным зажиганием, и, соответственно, горячим датчиком и топливным трубопроводом, иначе есть риск сорвать резьбу, так как в холодном состоянии металл сжимается, и откручивать нужно с немалыми усилиями. Когда из отверстий покажется пар, можно глушить двигатель. Откручивать дальше будет легче.
Закрутите новый лямбда зонд до упора, чтобы создать хорошую герметичность.
Соедините электрическую проводку.
Проверьте работоспособность нового кислородного датчика с помощью осциллографа, цифрового вольтметра, омметра при температуре двигателя от 350 С.

www.drive2.ru

инфа про лямбда зонд! — DRIVE2

Лямбда-зонд, что это такое, для чего он нужен и как его проверить?

Лямбда-зонд. Агент экологической разведки

О назначении лямбда-зонда, или кислородного датчика, сегодня хотя бы приблизительно знает большинство автовладельцев. Пополнить багаж знаний позволит информация, предоставленная российским представительством группы компаний Bosch.

Принцип действия лямбда-зонда

При сгорании в бензиновом двигателе происходит физико-химический процесс, в ходе которого углеводородные молекулы топлива реагируют с кислородом, содержащимся в поступающем воздухе. Возникающие при этом химические соединения на 99% безвредны (азот, углекислый газ, водяной пар), но оставшийся процент содержит вредные элементы, такие, как угарный газ CO, несгораемые углеводороды HC и окиси азота NOx. Одной из целей развития автомобильных технологий является устранение этих компонентов эмиссии в максимально возможной степени. Ключевыми факторами при этом являются оптимизация процесса сгорания в двигателе и система очистки выхлопа.

Трехканальный каталитический конвертер по-прежнему остается наиболее эффективным средством преобразования HC и CO в безопасные воду и углекислый газ (окисление) и NOx в азот (восстановление) в бензиновых двигателях. В то же время катализатор работает только в узком диапазоне пропорций воздушно-топливной смеси, близком к 14,7:1 (λ=1). Если смесь перенасыщена топливом (λ«1), коэффициент преобразования NOx остается высоким, но CO и HC окисляются недостаточно. Если смесь слишком бедная (λ>1), ситуация меняется на противоположную.

Для поддержания оптимальной пропорции воздушно-топливной смеси необходим датчик, передающий сведения о составе выхлопных газов в систему управления двигателем. Именно для этого служит лямбда-зонд, измеряющий остаточное содержание кислорода в выхлопном газе и передающий эти данные в блок управления в форме электрического сигнала. В зависимости от сигнала воздушно-топливная смесь обогащается или обедняется. В дизельных двигателях лямбда-зонд выполняет другую функцию: вместе с массовым расходомером воздуха он помогает точно определять степень рециркуляции выхлопных газов для каждого рабочего режима.

Типы зондов

За последние тридцать лет получили распространение два типа лямбда-зондов — стоковые LSH и LSF и широкополосные LSU. В стоковых выхлопные газы проходят по внешней стороне керамического измерительного элемента, внутри которого находится эталонный воздух. В зависимости от остаточного содержания кислорода в выхлопе, на двух полюсах сенсорного элемента возникает разная концентрация молекул кислорода. Поскольку керамический датчик пропускает ионы кислорода, они могут перемещаться между двумя сторонами сенсорной ячейки, создавая электрическое напряжение. Стоковые датчики генерируют высокое напряжение (около 0,9 В) при насыщенной смеси (низкое содержание остаточного кислорода в выхлопных газах) и низкое (около 0,1 В) — при бедной смеси (высокое содержание кислорода). Скачок напряжения между отдельными уровнями происходит при λ=1. Классический стоковый зонд с подогревом или без представляет собой так называемый контактный датчик. В 1994 г. компания Bosch первой в мире начала на базе керамической планарной технологии серийный выпуск стоковых зондов, устойчивых к высоким температурам и воздействиям окружающей среды. Современное поколение зондов LSF4.2 отличается быстрым временем реагирования, готовностью к работе через 10 секунд после пуска двигателя и долгим сроком службы.

Широкополосные зонды, выпускающиеся с 1998 г., отличаются от стоковых более широким диапазоном измерения и производятся исключительно на базе планарной технологии. Принцип действия широкополосного зонда основан на постоянном поддержании значения λ=1 в измерительной камере при помощи насосного тока. Измерительная камера отделена от потока выхлопных газов пористым диффузионным барьером. При насыщенной смеси в измерительную ячейку накачивается кислород, для чего к насосной ячейке подводится «отрицательный» ток. При λ=1 насосный ток равен нулю. При обедненной смеси кислород выкачивается из измерительной ячейки «положительным» током.

Исходящий сигнал широкополосного зонда пропорционален остаточному содержанию кислорода в выхлопных газах. Такие датчики необходимы, прежде всего, в бензиновых двигателях с прямым впрыском на обедненных смесях, а также в газовых и дизельных двигателях, чтобы блок управления двигателем мог получать точные данные о составе смеси даже при λ>1. Последнее поколение широкополосных зондов Bosch, LSU4.9, поддерживает диапазон измерений при значениях от 0,7 до бесконечности, а также отличается высоким уровнем точности сигнала и временем реагирования менее 30 мс. Благодаря этому возможен индивидуальный контроль состава смеси для каждого цилиндра и, как следствие, более экономичная и экологичная работа двигателя. Полная готовность датчика к работе достигается в течение менее 10 секунд после пуска двигателя, что позволяет еще больше сократить вредные выбросы в фазе прогрева.

Текущие разработки

Лямбда-зонды Bosch© Фото: BoschСтоковые и широкополосные зонды еще долго будут использоваться в современных транспортных средствах, при этом выбор типа датчика автопроизводителем будет зависеть от конструкции двигателя и профиля требований. В некоторых случаях могут применяться комбинации зондов обоих типов. Например, с широкополосным датчиком перед катализатором и стоковым после него.

Лямбда-зонды непрерывно совершенствуются: в настоящее время специалисты Bosch разрабатывают передовой широкополосный датчик с расширенным диапазоном измерения, сокращенным временем реагирования и намного более долгим сроком службы. Новый зонд под условным названием LSU ADV должен поступить в серийное производство в 2007 г. По заявлениям Bosch, он способен обнаруживать остаточное содержание кислорода в выхлопных газах уже при λ=0,65, время реагирования составляет менее 30 мс, а в рабочее состояние зонд приходит всего за 5 секунд. Разработчики компании утверждают, что характеристики зонда LSU ADV делают возможными совершенно новые функции и способы применения, например мониторинг насоса дополнительного воздуха в фазе прогрева или монтаж зонда перед турбокомпрессором. Установка датчика рядом с двигателем позволяет еще точнее контролировать состав смеси индивидуально для каждого цилиндра. Другие направления совершенствования лямбда-зонда — повышение водостойкости и миниатюризация, связанная с постоянным сокращением монтажного пространства в современных автомобилях.

Справка

Группа компаний Bosch является ведущим международным производителем автомобильного и промышленного оборудования, потребительских и бытовых изделий. Объем продаж корпорации, штат которой насчитывает около 250 тысяч сотрудников, составил в 2005 финансовом году 41,5 млрд евро. Основанная Робертом Бошем (1861–1942) в 1886 году в Штутгарте под названием «Мастерская точной механики и электротехники», компания в настоящее время является крупнейшим концерном в области производства, сбыта и технического обслуживания, насчитывая около 270 дочерних компаний и свыше 12 тысяч сервисных центров в более чем 140 странах.

Особая учредительская структура группы компаний Bosch гарантирует ее финансовую независимость и свободу предпринимательства. Она позволяет компании осуществлять необходимые инвестиции, обеспечивающие ее будущее, а также выполнять все социальные обязательства, как было завещано ее основателем. 92% Robert Bosch GmbH принадлежат благотворительному фонду Robert Bosch Stiftung. Предпринимательская деятельность осуществляется компанией Robert Bosch Industrietreuhand KG.

В России в 1904 году было открыто одно из первых зарубежных представительств компании. В настоящее время Bosch представлена пятью компаниями и производственными филиалами в 14 городах Российской Федерации с общим штатом 1720 человек. Bosch представляет в России широкую линейку высококачественных продуктов: от автомобильных запчастей, диагностического оборудования и электроинструментов до бытовой техники, систем безопасности и промышленного оборудования.

В 2005 году консолидированные продажи на российском рынке увеличились с ?248 млн до ?287 млн. Общие продажи за прошедший финансовый год, включая показатели неконсолидированных предприятий, возросли с ?321 млн до ?402 млн.

www.5koleso.ru

www.drive2.ru

Лямбда-зонд (датчик кислорода) — DRIVE2

Какая связь между катализатором и лямбда-зонд?

Лямбда-зонд — это датчик кислорода (Oxygen Sensor), устанавливаемый в системе выпуска. В выхлопной системе автомобиля, как правило, их один или две штуки. Первый датчик лямбда-зонд всегда устанавливается сразу после выпускного коллектора, чтобы выхлопные газы обтекали рабочую поверхность датчика, а второй, если есть, сразу после катализатора. Применение лямбда-зонд обусловнено жесткими экологическими нормами по снижению содержания вредных веществ в выхлопных газах. Катализатор предназначен для снижения выброса токсичных отработавших газов. Данная статья опубликована в паблике Машины. В свою очередь, катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор выходит из строя очень быстро – вот тут и необходим датчик кислорода, он же лямбда-зонд (ЛЗ), он же O2-датчик.

Название датчика кислорода происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Избыток воздуха в смеси измеряется весьма оригинально – путем определения в выхлопных газах содержания остаточного кислорода (O2). При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, L равна 1. Окно эффективной работы катализатора очень небольшое: L = 1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Поэтому лямбда-зонд устанавливается перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь анализирует и оптимизирует состав смеси путем изменения количества подаваемого в цилиндры двигателя топлива. Как мы уже упомянали выше, на некоторых современных автомобилях имеется дополнительный датчик лямбда-зонд, который устанавливается на выходе катализатора. Это позволяет увеличить точность приготовления смеси и контролировать работу катализатора, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Лямбда-зонд, как правило, изготавливают из циркониевого сплава (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. вк.ком/карс.бест В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Возможные причины поломки лямбда-зонд:
1)некачественный бензин, железо, свинец забивают платиновые электроды за несколько неудачных заправок;
2)перегрев корпуса датчика из-за неправильно установленного угла опережения зажигания, сильно переобогащенной топливной смеси;
3)масло в выхлопной трубе из-за плохого состояния маслосъемных колец;
4)сбои в системе зажигания, хлопки в глушителе и в выпуске разрушающие хрупкую керамику;
5)удары;
6)многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны;
7)попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей, моющих средств;
использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в 8)своем составе силикон;
9)обрыв, плохой контакт или замыкание на «массу» выходной цепи датчика.

Возможные признаки неисправности лямбда-зонд:
1)неустойчивая работа двигателя на малых оборотах;
2)ухудшение динамических характеристик автомобиля;
3)повышенный расход топлива;
4)повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния;
5)характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя;

Можно ли отключать лямбда-зонд после замены катализатора на пламегаситель?

После замены катализатора на пламегаситель, наличие кислородного датчика, как детали выхлопной системы, обеспечивающей в числе прочего эффективную работу катализатора, становится не важным. Отсюда вопрос: допускается ли эксплуатировать автомобиль совсем без лямбда-зонда? Однозначного ответа для всех автомобилей нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограмировать контроллер на режим работы без катализатора. Это возможно у большинства BMW с "мозгами" BOSH (Siemens не перепрограмируется). В этом случае после замены катализатора на пламегаситель меняется программа управления и лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и, если неисправность датчика сильно влияет на работу мотора, тогда выхода нет — необходимо устанавливать исправный датчик лямбда-зонд .

Взаимозаменяемость лямбда-зонд.

Рекомендованные заводом-изготовителем лямбда-зонды и сходные по конструкции циркониевые датчики могут быть взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в автомобиле цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Рекомендуется использовать графитовую смазку, чтобы датчик не прикипел к выпускному коллектору.

www.drive2.ru

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Ошибки лямбда-зонд в бортовой системе автомобиля

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Достаточно подключить диагностическое оборудование и считать коды неисправностей.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

autovogdenie.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта