Ключ к знанию

Масла температура замерзания


Масла 8) полезно знать! — DRIVE2

Функции моторных масел

Моторные масла работают в исключительно тяжелых условиях. Другим смазочным материалам, применяемым в автомобилях — трансмиссионным маслам и пластичным смазкам, — несравненно легче выполнять свои функции, не теряя нужных свойств, так как они работают в среде относительно однородной, с более-менее постоянными температурой, давлением и нагрузками. У моторных же режим "рваный" — одна и та же порция масла длительное время подвергается ежесекундным перепадам тепловых и механических нагрузок, поскольку условия смазки различных узлов двигателя далеко не одинаковы. Кроме того, моторное масло подвергается химическому воздействию — кислорода воздуха, других газов, продуктов неполного сгорания топлива, да и самого топлива, которое неминуемо попадает в масло, хотя и в очень малых количествах. В таких, мягко говоря, некомфортных условиях моторное масло должно в течение длительного времени выполнять возложенные на него функции. А именно:

уменьшать трение между соприкасающимися деталями, снижая износ и предотвращая задиры трущихся частей;
уплотнять зазоры, в первую очередь, между деталями цилиндро-поршневой группы, не допуская или сводя к минимуму прорыв газов из камеры сгорания;
защищать детали от коррозии;
отводить тепло от трущихся поверхностей;
выносить продукты износа из зоны трения, тем самым замедляя обpазование отложений на повеpхности частей двигателя .

Некоторые основные характеристики масел
Вязкость — это одна из важнейших характеристик масел. Моторные масла, как и большинство смазочных материалов, изменяют вязкость в зависимости от своей температуры. Чем ниже температура, тем больше вязкость и наоборот. Чтобы обеспечить холодный пуск двигателя (проворачивание коленвала стартером и прокачивание масла по системе смазки) при низких температурах, вязкость не должна быть очень большой. При высоких температурах, наоборот, масло не должно иметь очень малую вязкость, чтобы создавать прочную масляную пленку между трущимися деталями и необходимое давление в системе.

Индекс вязкости — показатель, который характеризует зависимость вязкости масла от изменения температуры. Это безразмерная величина, т.е. не измеряется в каких-либо единицах– это просто число. Чем выше индекс вязкости моторного масла, тем в более широком температурном диапазоне масло обеспечивает работоспособность двигателя. Для минеральных масел без вязкостных присадок индекс вязкости составляет 85-100, масла с вязкостными присадками и синтетические масла-компоненты могут иметь индекс вязкости 120-150. У маловязких глубокоочищенных масел индекс вязкости может достигать 200.

Температура вспышки. Этот показатель характеризует наличие в масле легкокипящих фракций, и, соответственно, связан с испаряемостью масла в процессе эксплуатации. У хороших масел температура вспышки должна быть выше 225°С. У недостаточно качественных масел маловязкие фракции быстро испаряются и выгорают, ведя к высокому расходу масла и ухудшению его низкотемпературных свойств.

Температура застывания — это температура, при которой масло практически полностью теряет текучесть (подвижность). Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.

Щелочное число (TBN). Показывает общую щелочность масла, включая вносимую моющими и диспергирующими присадками, которые обладают щелочными свойствами. TBN характеризует способность масла нейтрализовывать вредные кислоты, поступающие в него в процессе работы двигателя и противодействовать отложениям. Чем ниже TBN, тем меньше активных присадок осталось в масле. TBN большинства масел для бензиновых двигателей обычно имеет значения в пределах 8-9 единиц, а для дизельных двигателей около 11-14. При работе моторного масла общее щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Значительное падение числа TBN приводит к кислотной коррозии, а также загрязнению внутренних частей двигателя.

Кислотное число (TAN). Кислотное число является показателем, характеризующим наличие в моторных маслах продуктов окисления. Чем меньше его абсолютное значение, тем лучше условия работы масла в двигателе и тем больше его остаточный ресурс. Повышение числа TAN служит показателем окисления масла, вызванного длительным временем использования и/или рабочей температурой. Общее кислотное число определяется для анализа состояния моторных масел, как показателя степени окисления масла и накопления кислых продуктов сгорания топлива.

Базовые масла

Моторное масло состоит из основы (базового масла) и присадок. Свойства масла определяются прежде всего химическим составом основы, присадки же предназначены для корректировки и улучшения этих характеристик. С помощью присадок можно значительно повысить эксплуатационные свойства моторных масел, даже изготовленных из не самых лучших базовых масел. Но при длительной эксплуатации и особенно при высоких нагрузках присадки разрушаются, и конечное качество моторного масла, проработавшего в двигателе более половины положенного срока, определяется качеством базового масла. Основы масла бывают минеральные (т.е. полученные путём очистки соответствующей фракции нефти) и синтетические (т.е. полученым путём каталитического синтеза из газов). Комбинация минеральных и синтетических основ, при условии не менее 25 % синтетического базового масла, называется полусинтетической базой.
Условные эксплуатационные характеристики (по возрастанию качества), в %
(минеральное базовое масло принято за 100 %)

Минеральное, обычного качества- 100 %
Гидрокрекинговое, улучшенное минеральное- 200 %
Синтетическое, полиальфаолефиновое- 300 %
Синтетическое, эстеровое- 500 %

Итак, гидрокрекинговые масла — это продукты перегонки и глубокой очистки нефти. Гидрокрекинг отбрасывает все «ненужное», ну а если захватывается что-то «полезное», необходимые свойства придаются с помощью присадок. Но четко отфильтровать ненужные примеси сложно — поэтому имеет место большее нагарообразование и «содействие» коррозии у гидрокрекинговых масел по сравнению «синтетикой». Гидрокрекинговое масло получается близким по качеству к «синтетике», но быстрее стареет, теряет свои свойства. Зато они обладают высоким индексом вязкости, противоокислительной стойкостью и стойкостью к деформациям сдвига, а от износа могут защищать даже лучше, чем синтетические. С другой стороны, «синтетика» более однородна в смысле линейности углеводородных цепей, что дает преимущества, например, в температуре замерзания. Есть еще один нюанс. Гидрокрекинг — процесс каталитический, как, впрочем, и синтез. Но если первый идет, например, на никеле, то второй — на углероде. Понятно, что углерод в этом смысле лучше, так масло будет избавлено от нежелательных примесей соединений катализаторов.

Самое интересное, что подавляющее большинство моторных масел, позиционируемых как полусинтетические, и даже полностью синтетические, являются ни чем иным, как гидрокрекинговыми маслами. Это общая тенденция крупнейших производителей масел. Программа BP (кроме Visco 7000), Shell (кроме 0W-40), частично Castrol, Mobil, Esso, Chevron, Fuchs построена на гидрокрекинге. Все масла южно-корейской фирмы ZIC- это только гидрокрекинг.

Полусинтетика – это смесь минеральных и синтетических базовых масел, и может содержать в своем составе от 20 до 40 процентов «синтетики». Специальных требований к производителям полусинтетических смазочных материалов в отношении того, какое количество синтетического базового масла (синтетического компонента) должно быть в готовом моторном масле — нет. Также нет никаких предписаний, какой синтетический компонент (базовое масло группы III или группы IV) использовать при изготовлении полусинтетического смазочного материала. По своим характеристикам эти масла занимают промежуточное положение между минеральными и синтетическими маслами, т.е. их свойства лучше обычных минеральных масел, но хуже синтетических. По цене же эти масла значительно дешевле синтетических.

Синтетические масла обладают исключительно удачными вязкостно-температурными характеристиками. Это, во-первых, гораздо более низкая, чем у минеральных, температура застывания (-50°С, -60°C) и очень высокий индекс вязкости, что существенно облегчает запуск двигателя в морозную погоду. Во-вторых, они имеют более высокую вязкость при рабочих температурах свыше 100°C — благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах. К прочим достоинствам синтетических масел можно отнести повышенную стойкость к деформациям сдвига (благодаря однородности структруры), высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления), а также небольшие по сравнению с минеральными маслами испаряемость и расход на угар. Немаловажно и то, что синтетика требует введения минимального количества загущающих присадок, а особо высококлассные ее сорта не требуют таких присадок вообще, следовательно, эти масла очень стойкие — ведь разрушаются в первую очередь именно присадки. Все эти свойства синтетических масел способствуют снижению общих механических потерь в двигателе и уменьшению износа деталей. Кроме того, их ресурс превышает ресурс минеральных в 5 и более раз. Основным фактором, ограничивающим применение синтетических масел, является их высокая стоимость. Они в 3-5 раз дороже минеральных.

Присадки

При современном уровне развития двигателестроения использование масла без присадок практически невозможно, т.к. невозможно создание масел, которые обеспечили бы эффективную защиту двигателя и одновременно не разрушались в течение длительного времени. Все современные моторные масла содержат в своем составе пакет (набор) присадок, содержание которых суммарно может достигать 20%.

Присадки можно разделить на несколько типов:

Вязкостно-загущающие присадки
Моющие присадки (детергенты и дисперсанты)
Противоизносные присадки
Ингибиторы окисления (антиокислительные присадки)
Ингибиторы коррозии и ржавления
Антипенные присадки
Модификаторы трения
Депрессорные присадки.

Классификация масел

Для того чтобы двигатель отработал расчетный ресурс, необходимо соблюдать несколько простых правил:

При выборе моторного масла руководствоваться перечнем масел, допущенных к применению производителем автомобиля.
Замену масла производить в сроки, установленные производителем. Интервал замены масла необходимо уменьшить при эксплуатации автомобиля в условиях, когда движение осуществляется преимущественно на низших передачах (в городе, по бездорожью), так как двигатель совершает большее количество оборотов на тысячу километров пробега, чем при движении по трассе. Для автомобилей со значительным пробегом замену масла также нужно производить чаще, потому что условия его работы в изношенных двигателях более жесткие (прорыв раскаленных газов в картер из-за увеличенных зазоров между поршнями и цилиндрами и т. д.).
Недопустимо смешивать минеральное масло с синтетическим или полусинтетическим из-за разной растворимости присадок в минеральной и синтетической основах. Результатом смешивания может быть выпадение присадок в нерастворимый осадок. Доливать следует тот же сорт масла, который залит в двигатель. Масла разных производителей содержат различные пакеты присадок, которые могут быть несовместимы.
Если в процессе эксплуатации масло заменялось своевременно и имело соответ

www.drive2.ru

Температура застывания смазочного масла – таблица свойств масел — Оборудование

Автор Admin На чтение 3 мин. Просмотров 13 Опубликовано

Материалы, способные уменьшать силы трения, увеличивать нагрузочную способность механизмов, уменьшать износ трущихся поверхностей, называют смазочными материалами. Наибольшее применение имеют жидкие и пластичные смазочные материалы. Из твердых смазочных материалов применяют графит и дисульфид молибдена.

Смазочные масла

В настоящее время все масла, применяемые в качестве смазочного материала в узлах трения (табл. 1 и 2) получают путем разделения нефти на составные части с добавлением различных присадок, улучшающих свойства масла.

Одно из важнейших свойств масел – вязкость, которая находится в обратной пропорциональной зависимости от температуры: чем выше температура, тем меньше вязкость, и наоборот. Температура, при которой определяется вязкость масла, указывается ниже обозначения вязкости. Например, кинематическая вязкость масла П‑28 γ100 – 26 сСт, т. е. при температуре 1000 C вязкость масла П‑28 равна 26 сСт.

При подаче масла к узлам трения, работающим при повышенной температуре, необходимо знать температуру вспышки паров масла. Температуру вспышки определяют в открытом или закрытом тигле. Обычно в справочниках указывается температура вспышки паров масла в открытом тигле.

Для определения прокачиваемости масла по трубопроводам и возможности смазки узлов трения, работающих при пониженной температуре, большое значение имеет температура застывания масла. Под температурой застывания масла подразумевается температура, при которой масло, помещенное в пробирку и наклоненное под углом 45°, не изменяет своего уровня в течение 1 мин.

Мерой содержания в масле свободных органических кислот является кислотное число, выражаемое числом миллиграммов КОН, необходимых для нейтрализации 1 г масла. При старении масла кислотное число повышается. Во многих случаях это число является основным показателем для смены масла.

Таблица 1. Легкие и средние индустриальные масла

Показатель

И‑5А

И‑8А

И‑12А

И‑20А

И‑25А

И-30А

И‑40А

И‑50А

И‑70А

И-100A

Т22

Т30.

Т40

Т57

Вязкость кинематическая при 50 °С, сСт

4 – 5

6 – 8

10 – 14

17 – 23

24 – 27

28 – 33

35 – 45

47 – 55

65 – 75

90 – 118

20 – 23

28 – 32

44 – 48

55 – 59

Температура застывания, С

‑25

‑20

‑30

‑15

‑15

‑15

‑15

‑20

‑10

‑10

‑15

‑10

‑10

Температура вспышки, C

120

130

165

180

180

190

200

200

200

210

180

180

195

195

Кислотное число, мг, KOH на 1 г

Масла

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,02

0,02

0,02

0,05

Таблица 2. Тяжелые индустриальные масла

Показатель

П‑28

MC‑14

МС‑20

МК‑22

АС‑6

АС‑10

АК‑15

Дп‑8

Дп-М

ТАП-15В

Цилин дров. 24

Цилин дров. 38

Цилин дров. 52

К‑12

Вязкость кинематическая при 50 °С, сСт

26 – 30

14

20

22

6

10

15

8 – 9

10,5 – 12,5

15

20 – 28

32 – 44

44 – 59

11 – 14

Температура застывания,

C

‑10

‑30

‑18

‑14

‑30

‑25

‑15

‑25

‑18

‑20

+2

+17

4–5

‑25

Температура вспышки, C

285

200

225

230

185

200

215

200

200

180

240

300

310

216

Кислотное число, м г KOH на 1 г масла

Од

0,25

0,03

0,10

0,02

0,02

0,2

При работе узлов трения в масло попадают продукты износа трущихся поверхностей. Эти механические примеси частично находятся в масле во взвешенном состоянии, частично выпадают в осадок. Механические примеси, находящиеся в масле во взвешенном состоянии, значительно увеличивают износ трущихся поверхностей. Для удаления механических примесей масло подвергают отстою, фильтрованию и сепарации.

При выборе сорта масла для циркуляционных систем смазки учитывают его окисляемость – способность масла вступать в реакцию с кислородом. Стойкость к окислению – показатель стабильности того или иного масла.

Срок службы масел зависит от скорости накопления в нем вредных примесей и его старения. Сущность старения заключается в том, что в процессе эксплуатации происходит окисление масла кислородом воздуха с образованием растворимых кислот и шлама. Масло подлежит замене, если при анализе обнаружено: повышение кинематической вязкости более чем на 30 %; возрастания кислотного числа до 3 мг KOH на 1 г масла; содержание воды более 0,2 %; содержание механических примесей неабразивного характера (шлам, примесь пластичных смазок) более 0,1 ί%.

arxipedia.ru

Subaru Impreza Снежная королева › Бортжурнал › Моторные масла. Испытание холодом. Часть 1 — Охлаждение.

Добрый день, партнеры, коллеги и автолюбители!

Сегодня мы начинаем серию испытаний моторных масел. Генеральным спонсором нашим выступает природа-матушка, преподнесшая нам самый важный элемент — мороз. Именно на стойкость к морозу, поведения при охлаждении и заморозке и потере текучести мы и будем проверять моторные масла самых разных производителей. Абсолютно предвзято, поскольку выбираем масло для своей любимицы.

В минувшие две зимы был у меня печальный опыт попасть на низкое качество достаточно именитых брендов, постараемся и их задействовать в нашем тесте.

Теперь вкратце о том, что же мы будем делать.
На первом этапе возьмем по 200 мл синтетических и полностью синтетических моторных масел вязкостей 5w-30, 5w-40, 0w-30, 0w-40 — замерим время падения первой капли, замерим время протекания масла до заданной отметки в 5 см при наклоне емкости на угол 45 градусов. Все это выполним при комнатной температуре в +24 градуса.

Затем поместим емкости с маслом на открытый воздух при температуре -30 градусов на 4 часа. Почему именно на 4 часа? Полагаю, не у меня одного настройка автозаводки на сигнализации градуируется в 2, 4, 12 часов. Мне всегда было интересно: ведь при морозе в 30 градусов прогрева едва ли хватает на час. Что же становится с маслом за 4 часа?

Прогноз погоды на 31 января в Иркутске — приятно, что обещают до -21 градуса потепление, пока же -30 И еще не вставало солнце, то есть до обеда нас как раз ждут стабильные -30.

И на следующем этапе (да здравствует пятница!) у нас пойдет этап "заморозки" — мы оставим наши масла на все выходные на температуре от -26 до -32, которые обещают нам синоптики на выходные, проимитировав тем самым двухдневный простой автомобиля без прогревов с дальнейшей попыткой завести. И вот тогда-то будет самое интересное — как же будут чувствовать себя наши испытуемые и на кого стоит полагаться в такой мороз, а на кого — нет.

Итак, мы приступаем к замерам, а вам приятного времяпрепровождения!

9:50. Проведены первые действия над испытуемыми: проградуированы емкости, откупорены и разлиты пробные 200 мл, сфотографированы, рассмотрены, закупорены и выставлены на мороз. А на улице-то уже -31! Само-то!

9:41 по Иркутску. На улице уже -31!

Кстати, еще ни слова не сказал об участниках теста.
Сегодня на нашу испытательную площадку попали:
— Лукойл Люкс 5w-40 полусинтетическое масло,
— Petro-Canada Supreme 5w-20 полусинтетическое масло,
— Total Quartz 9000 5w-40 синтетическое масло,
— Neste City Standart 5w-30 синтетическое масло.

Участники испытаний: Лукойл Люкс 5w-40, Petro-Canada Supreme 5w-20, Total Quartz 9000 5w-40, Neste City Standart 5w-30.

Остановимся немного поподробнее на тех характеристиках, которые нам интересны.

Паспортные данные + .

Лукойл Люкс 5w-40 — полусинтетическое масло, уровень качества API SN/CF (для современных бензиновых двигателей и дизельных двигателей до 1992 года выпуска — прим.ред.). Индекс вязкости 173. Температура застывания -41 градус. Произведено в России.

Лукойл Люкс 5w-40 — единственная канистра, которая под крышкой хранила еще пломбу-золотинку. Масло самое темное их тестируемых. Очень жидкое — оно прямо стекало и с карандаша, и при наклоне банке оооочень быстро добралась до отметки 5 см — буквально вслед за движением к наклону. Этикетка на русском языке с указанием адреса производителя.

Petro-Canada Supreme 5w-20 — полусинтетическое энергосберегающее масло, уровень качества SМ (только для бензиновых двигателей всех лет выпуска до 2006-2009 включительно — прим.ред.). Индекс вязкости 159. Температура застывания -36 градусов. Масло произведено из базового масла III группы по классификации API по синтетической технологии HT Purity. Произведено в Канаде.

Petro-Canada Supreme 5w-20 — канистра с самым узким горлышком, обеспечивающая невозможность плюхнуть порцию масла и залить двигатель. Практичный североамериканский подход. По цвету масло — самое прозрачное из всех тестируемых. Жидкое. Также весьма быстро достигло отметки в 5 см при тесте на наклон емкости при температуре масла в +24 градуса. Этикетка на русском языке присутствует. Адрес производителя заканчивается на слове Канада, зато есть телефон дистрибьютора.

Total Quartz 9000 5w-40 — цитирую: "Смазка, изготовленная по синтетической технологии". Уровень качества API SM/CF (для бензиновых двигателей до 2006-2009 года выпуска и дизельных двигателей до 1992 года выпуска — прим.ред.). Индекс вязкости 169. Температура застывания -39 градусов. Произведено во Франции.

Total Quartz 9000 5w-40 — оригинальная наклейка на 3 страницах. Добрался до русской версии после 2 минут борьбы с ней и рассмеялся. У меня в руках не масло, а смазка. Уровень качества на канистре не указан, хвала интернету. Зато подробно прописаны адреса и производителя и импортера. Из тестируемых — самое густое масло, в тесте на 5 см пробег масло было самым неспешным. Цвет немного светлее Лукойла, потемнее Petro Canada и Neste.

Neste City Standart 5w-30 — цитирую: "Синтетическое топливосберегающее специальное моторное масло, особо предназначенное для использования в бензиновых и дизельных двигателях Ford". Уровень качества SJ (для бензиновых двигателей выпуска до 1994(!) года — прим.ред.). Индекс вязкости 166. Температура застывания -45 градусов. Произведено в Финляндии.

Neste City Standart 5w-30 — второе по степени осветленности масло после Petro Canada и первое по заявленной производителем температуре застывания. Жидкое. На этикетке кратко и лаконично перечислены все преимущества и допуски, описание на русском языке и подробный адрес производителя.

Итак, масла разлиты, температура соотвествующая за окном, вывешиваем масла на мороз!

Закупорили.

Вывесили. Лишь бы пакет не порвался, а то прилетит кому-то счастье с 4 этажа…

Все, ждем 4 часа. Это где-то в районе 13 будет. А тем временем за окном уже — 33 градуса…

А за окном-то уже оеешеньки! -33!

Хочу обратить внимание всех читателей, что в тесте у нас новые масла. То есть фактически мы сейчас рассматриваем ситуацию заливки масла в двигатель как раз в морозы. А после того, как масло в движке поработает, часть свойств его теряется, то есть и та же температура застывания немного снижается, на 1-2 градуса. Соотвественно, если кто-то из испытуемых замерзнет, будучи новым при -30…-32, то на зиму лить его вообще не стоит.
Ждем-с, в общем.

13:46. Итак, прошло 4 часа, за это время температура с -33 поднялась до -26, достаем емкости.

Масла хорошо перекатываются по емкости, видно, что стали погуще, но все еще жидкие. Ни осадков, ни хлопьев, ничего нет в них.

Делаем замеры.

Как видно из цифр, самое жидкое на данный момент PC, самое густое — Total. Лукойл переместился из самого жидкого на третью строчку рейтинга.

Должен заметить по второй таблице — ставим карандаш вертикально в масло, до дна емкости. Когда поднимаешь карандаш, с масла струйкой сбегает масло. Потом появляется момент, когда струя прерывается и потом падает капля — вот этот промежуток от момента истечения струи до отрыва капли мы и замеряли после 4 часового охлаждения масел.

Та самая капля, отрыв которой мы и замеряем.

Выходит, автозаводки при температуре окружающей среды в -30 включительно каждые 4 часа должно хватать для того, что масло вязкости 5w не успевало застыть и могло обеспечить запуск двигателя. Ставим себе галочку на заметку.

Немного теории.

Среди комментов успело прозвучать мнение, что все масла практически одинаковы и т.д.
Не соглашусь, и вот почему: Разница в маслах в базе, которая используется для изготовления масла. В частности, в России нет ни одной установки гидрокрекинга базового масла, т.е. российские базовые масла идут с повышенным содержанием серы, углеводов и иных веществ. Чисто визуально — они более желтые, оранжевые, коричневые.
Базовые масла для производства синтетических масел обязательно проходят гидрокрекинг и жесткий гидрокрекинг, вследствие чего база становится прозрачной, как вода.

www.drive2.ru

Независимый низкотемпературный тест моторных масел

При выборе моторного масла для зимней эксплуатации следует обращать внимание на следующие технические характеристики, которые производители смазочных материалов обычно указывают в технических описаниях.

1. Температура замерзания (потери текучести) или Pour Point. Измеряется по ГОСТ 20287 или DIN ISO 3016 или ASTM D97. Этот параметр не имеет особого физического смысла для эксплуатации двигателя. Он указывается в целях хранения масла и указывает на то, что масло можно перелить из одной ёмкости в другую. Тем более что существуют специальные присадки – депрессоры, которые понижают температуру замерзания у минеральных масел. Добавив большое количество депрессорных присадок в минеральное гидрокрекинговое базовое масло можно добиться температуры замерзания готового масла даже ниже минус 40 С.

2. Динамическая вязкость при низкой температуре измеряемая при помощи имитатора запуска холодного двигателя CCS (Cold Cranking Simulator) по методам DIN 51 377 или ASTM D 2602. Этот важный параметр показывает насколько двигателю будет трудно провернуть холодное масло в цилиндро-поршневой группе. Измеряется в мПа*с. Чем ниже этот параметр, тем лучше. Граничные значения вязкости для разных классов масел определяет международный стандарт SAE J300.

Стандарт SAE J300 последняя редакция

3. Динамическая вязкость при низкой температуре измеряемая на миниротационном визкозиметре MRV (Mini Rotary Viscometer). Она измеряется при температуре на 5 С ниже, чем CCS и называется ещё «вязкостью прокачивания». Это показатель говорит о том, сможет ли загустевшее масло прокачать маслонасос двигателя и с какой скоростью холодное масло будет подано по маслоканалам к точкам смазки. Измеряется в мПа*с. Все три параметра – температура замерзания, динамическая вязкость CCS и динамическая вязкость MRV, чем меньше, тем лучше. Параметры CCS и MRV, участвуют в определения класса вязкости по SAE. Стандарт SAE определяет придельные значения вязкости при определённых температурах. Например масла вязкостью 5W-XX (20, 30, 40, 50) не должны иметь вязкость CCS при минус 30 С больше, чем 6600, а вязкость MRV не должна быть больше, чем 60000. Тогда это масло имеет право маркироваться, как 5W-XX.

В бытовых условиях можно так же оценить низкотемпературные свойства с помощью различных приспособлений. И если для многих регионов России морозы под 40 С это редкость, то для Якутии это будни. Вот пример таких испытаний от драйвовчанина Андрея Тоскина АКА Белководус.

Пояснения к видео можно почитать в блоге Андрея.

Общепризнанный технический факт - масла, изготавливаемые на основе полиальфаолефинов (ПАО), имеют лучшие низкотемпературные свойства по сравнению с минеральными гидрокрекинговыми маслами. При этом масла на ПАО имеют явные преимущества и при летней эксплуатации: более низкая испаряемость — параметр NOACK в тех. описаниях, более высокая термостабильность, низкая окисляемость и коксуемость, лучший отвод тепла от смазываемых поверхностей.

ravenol.su

Температура застывания моторных масел - Справочник химика 21

    Низкая температура застывания важна для зимних и всесезонных масел. При запуске холодного двигателя или в начале движения с непрогретым двигателем, моторное масло в первый же момент своей работы должно поступать в самые узкие и отдаленные места трения. Поэтому температура застывания должна быть ниже минимальной предполагаемой температуры окружающей среды. [c.38]
    Считают, что температура застывания моторного масла должна быть, но крайней мере, на 5—10° С ниже температуры запуска двигателя. Это объясняется тем, что температура застывания существенно влияет на подачу масла к трущимся деталям. [c.228]

    К топливам, маслам и другим нефтепродуктам предъявляются определенные требования. Каждый сорт моторного топлива характеризуется температурами, при которых происходит почти полное выкипание топлива или некоторой определенной доли его (5, 10, 40% и т. д.). Главнейшим показателем качества моторного бензина служат его антидетонационные свойства. Весьма важна также химическая стабильность моторного топлива и температура застывания. [c.246]

    Депрессор — присадка к моторным маслам, применяемая для понижения температуры застывания и улучшения текучести минеральных масел при низких температурах. В качестве депрессоров служат различные продукты переработки органических веществ, носящие технические названия (парафлоу, сантопур, вольтоль и т. д.). [c.183]

    При изучении свойств моторных масел из парафинистых нефтей, содержащих около 1 % депрессатора АзНИИ, было установлено, что присадка не ухудшает антикоррозионных свойств и термоокислительной стабильности масел. При добавлении 1 % депрессатора АзНИИ к маслу из калинской нефти температура застывания его снижается на 50—65°С и улучшается текучесть при низкой температуре. [c.149]

    В случае неглубокой депарафинизации масел, содержащих большие концентрации депрессорных присадок, при длительном хранении с частыми подогревом и охлаждением может произойти рецидив температуры застывания (обратный эффект), когда температура застывания повышается до температуры застывания базового масла [9.63, 9.64]. Подобные осложнения, как правило, исключаются при использовании моторных масел, но депрессорные присадки могут оказаться несовместимыми с другими присадками, например, с вязкостными, что может привести к выделению отдельных компонентов. Такие нежелательные реакции необходимо исключать путем подбора комбинаций присадок с соответствующими химическими структурами или применения многофункциональных присадок. [c.204]


    В качестве таких присадок применяют специальные химические соединения — депрессаторы АзНИИ, АзНИИ-ЦИАТИМ-1 (ГОСТ 7189—54) и др. Добавление 0,1 —1,0% этих присадок снижает температуру застывания на 15—30° С. Присадка АФК (ГОСТ 12 261-66) применяется для понижения температуры застывания моторных масел. Например, температура застывания масла НС-45 (ГОСТ 20 799—75) при добавлении к нему вышеуказанной присадки в количестве 1% снижается не менее, чем на 20° С. [c.46]

    Масла для холодильных машин, приборные, моторные и некоторые другие должны по условиям эксплуатации не терять подвижности при температурах, от —30 до —60 °С. В технических нормах это качество масла контролируется определением его температуры застывания. Значение температуры застывания зависит от присутствия в маслах твердых парафинов и церезинов. При низких температурах они кристаллизуются. Создается кристаллическая сетка, в которой заключены жидкие углеводороды, и вся система теряет подвижность. [c.96]

    Так, часто оказывается удобным получать дизельное топливо в виде двух компонентов — облегченного, удовлетворяющего требованиям по температуре застывания на зимний сорт, и утяжеленного, смешением которого с частью облегченного компонента можно получить летнее дизельное топливо. Ныне многие товарные нефтепродукты, включая и масла, производят смешением (компаундированием) отдельных фракций, получаемых с одной или нескольких установок. Составными частями (компонентами) моторных топлив стали продукты не только первичной переработки, но и вторичных процессов каталитического крекинга и риформинга, химической переработки углеводородных газов и др. [c.341]

    При депарафинизации первого масляного компонента бибиэйбатской парафинистой нефти (350—396° С) установлено, что температуры застывания —48° С, предусмотренной ГОСТ па трансформаторное масло, можно достичь при подаче 50% карбамида (активатор — этанол), а при подаче 100 и 200% карбамида температура застывания снижается до —50 и —52° С. Депрессия температуры застывания составляет соответственно 44, 46 и 48° С. Депарафинизация второго компонента бибиэйбатской нефти (399—500° С) карбамидом в количестве 100 и 200% позволяет достичь температуры застывания —12° С при депрессии, равной 35° С, что вполне обеспечивает выработку индустриальных и моторных масел. [c.58]

    Моторное масло должно обладать смазывающей способностью, т. е. требуемой вязкостью, хорошей прокачиваемостью при любой температуре, до -которой может нагреться двигатель, и, кроме того, оно должно иметь определенную маслянистость . Испытание маслянистости и способности масла работать при высоких давлениях проводится с помощью специальных устройств, измеряющих трение, таких, нанример, как прибор Дили и Хер-шеля (Deeley and Hershel [6]). Практика эксплуатации показывает, что обычные минеральные масла имеют удовлетворительные показатели маслянистости , хотя следует заметить, что зубчатые передачи автодвигателей требуют использования смазочных масел, содержащих противоизносные присадки. Минеральные масла среднего молекулярного веса, полученные из нефтей, не содержащих парафина, или депарафинизированные настолько, что их температура застывания удовлетворяет требованиям, предъявляемым климатическими условиями (—20° С в умеренном климате, —35° С на севере), будут сохранять удовлетворительную вязкость и подвижность при температуре эксплуатации. Способность моторного масла охлаждать двигатель — очень важный фактор, большая часть производимой при сгорании топлива тепловой энергии удаляется с помощью масла. Но улучшить эту характеристику трудно теплоемкость и теплопроводность масел можно варьировать в небольших пределах. [c.491]

    На рис. 10 показаны кривые вязкости и сдвига при —18° для четырех типичных моторных масел марки SAE

www.chem21.info

Моторные масла, состав, группы масел, присадки — DRIVE2

Базовые параметры масел

Вязкость — это одна из важнейших характеристик масел. Моторные масла, как и большинство смазочных материалов, изменяют вязкость в зависимости от своей температуры. Чем ниже температура, тем больше вязкость и наоборот. Чтобы обеспечить холодный пуск двигателя (проворачивание коленвала стартером и прокачивание масла) при низких температурах, вязкость не должна быть очень большой. При высоких температурах, наоборот, масло не должно иметь слишком малую вязкость, чтобы создавать прочную масляную пленку между трущимися деталями.

Индекс вязкости — показатель, который характеризует зависимость вязкости масла от изменения температуры. Это безразмерная величина, т.е. не измеряется в каких-либо единицах. Чем выше индекс вязкости моторного масла, тем в более широком температурном диапазоне масло обеспечивает работоспособность двигателя. Для минеральных масел без вязкостных присадок индекс вязкости составляет 85-100, масла с вязкостными присадками и синтетические масла-компоненты могут иметь индекс вязкости 120-150. У маловязких глубокоочищенных масел индекс вязкости может достигать более 200.

Температура вспышки. Этот показатель характеризует наличие в масле легкокипящих фракций, и, соответственно, связан с испаряемостью масла в процессе эксплуатации. У хороших масел температура вспышки должна быть выше 225°С. У недостаточно качественных масел маловязкие фракции быстро испаряются и выгорают, ведя к некоторому ухудшению его низкотемпературных свойств и окислению.

Температура застывания — это температура, при которой масло практически полностью теряет текучесть. Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры или кристаллизации парафинов вместе с повышением вязкости в такой степени, что масло становится полностью твердым.

Щелочное число (TBN). Показывает общую щелочность масла, включая вносимую моющими и диспергирующими присадками, которые обладают щелочными свойствами. TBN характеризует способность масла нейтрализовывать кислоты, поступающие в него в процессе работы двигателя и противодействовать отложениям. Чем ниже TBN, тем меньше активных присадок осталось в масле. TBN большинства масел для бензиновых двигателей обычно имеет значения в пределах 5-10 единиц, а для дизельных двигателей около 10-15. Однако по современным стандартам и дизельные и бензиновые масла укладываются примерно в 5-10 единиц. При работе моторного масла общее щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Значительное падение числа TBN приводит к коррозии, а также загрязнению шламами.

Кислотное число (TAN). Кислотное число является показателем, характеризующим наличие в моторных маслах продуктов окисления. Чем меньше его абсолютное значение, тем лучше условия работы масла в двигателе и тем больше его остаточный ресурс. Повышение числа TAN служит показателем окисления масла, вызванного длительным временем использования и/или рабочей температурой. Общее кислотное число определяется для анализа состояния моторных масел, как показателя степени окисления масла и накопления кислых продуктов сгорания топлива. Противоизносные компоненты всегда приводят к росту TAN.

Базовые масла
Моторное масло состоит из основы (базового масла) и присадок. Свойства масла определяются прежде всего химическим составом основы, присадки же предназначены для корректировки этих характеристик. С помощью присадок можно значительно повысить эксплуатационные свойства моторных масел, даже изготовленных из не самых лучших базовых масел. Но при длительной эксплуатации и особенно при высоких нагрузках присадки разрушаются, и конечное качество моторного масла, проработавшего в двигателе более половины положенного срока, определяется исключительно качеством базового масла. Основы масла бывают минеральные и синтетические . Комбинация минеральных и синтетических основ, при условии не менее 10 % синтетической базы, называется полусинтетической базой.

Масла — это углеводороды с определенным количеством атомов углерода. Эти атомы могут быть соединены как в длинные и прямые цепи, так и разветвленные, как крона какого-нибудь дерева. Чем более «прямыми» будут цепи, тем лучше будут свойства масла. Так, например, «ветвистым» молекулам легче свернуться в шарик, поскольку они более компактные, именно так происходит замерзание. То есть они будут замерзать при более высокой температуре, чем их «коллеги», состоящие из прямых цепей. Итак, нам нужно получить масло, состоящее из красивых одинаковых прямых углеводородных цепей. Никаких вредных примесей, ненасыщенных связей или колец. Получаемое из нефти масло идет к «идеалу», отсеивая все ненужное более или менее изощренными способами. Если менее — это обычная «минералка», более — гидрокрекинговое масло. В процессе каталитического гидрокрекинга происходит «выпрямление» цепей — изомеризация, но строя отборных молекул таким способом не получить. Ну а синтетическое масло? Его получают из легких газов, «наращивая» длину цепи до нужного числа атомов углерода. Условия этой реакции намного лучше контролируются, поэтому можно получить практически линейные цепи заданной длины.

Условные эксплуатационные характеристики (по возрастанию качества), в %
(минеральное базовое масло принято за 100 %)
Минеральное, обычного качества- 100 %
Гидрокрекинговое, полусинтетическое — 200 %
Синтетическое, полиальфаолефиновое- 300 %
Синтетическое, эстеровое- 500 %

По классификации Американского института нефти (API) базовые масла подразделяются на пять категорий:
Группа I — базовые масла, которые получены методом селективной очистки и депарафинизации растворителями (обычные минеральные)
Группа II — высокорафинированные базовые масла, с низким содержанием ароматических соединений и парафинов, с повышенной окислительной стабильностью (масла, прошедшие гидрообработку- улучшенные минеральные)
Группа III — базовые масла с высоким индексом вязкости, полученные методом каталитического гидрокрекинга (НС-технология). В ходе специальной обработки улучшают молекулярную структуру масла, приближая по своим свойствам базовые масла группы III к синтетическим базовым маслам IV группы. Не случайно масла этой группы относят к полусинтетическим (а некоторые компании даже к синтетическим базовым маслам).
Группа IV – синтетические базовые масла на основе полиальфаолефинов (ПАО). Полиальфаолефины, получаемые в результате химического процесса, имеют характеристики единообразной композиции, очень высокую окислительную стабильность, высокий индекс вязкости и не имеют молекул парафинов в своем составе.
Группа V – другие базовые масла, не вошедшие в предыдущие группы. В эту группу входят другие синтетические базовые масла и базовые масла на растительной основе — эфиров или эстеров.

Химический состав минеральных основ зависит от качества нефти, пределов выкипания отбираемых масляных фракций, а также методов и степени их очистки. Минеральная основа – самая дешевая. Это продукт прямой перегонки нефти, состоящий из молекул разной длины и разного строения. Из-за этой неоднородности – нестабильность вязкостно – температурных свойств, высокая испаряемость, низкая стойкость к окислению. Минеральная основа – самая распространенная в мире моторных масел.

Совершенствование минеральных базовых масел проводится по двум основным направлениям. Первое, при котором масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получить масла достаточно высокого уровня качества. Второе направление, при котором базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрокрекинга. В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, высокий индекс вязкости и стабильность параметров).

К какому классу относить такие масла? По цене «гидрокрекинг» ближе к «минералке», а по качеству, как уверяет продавец, ничуть не хуже «синтетики». Но мы же понимаем, что если бы дело обстояло именно так, такое дорогое удовольствие, как синтетическое масло, вымерло бы как класс… Гидрокрекинговое масло ближе к минеральному не только по цене, но и по способу получения, потому что оно тоже производится из нефти. Чем же оно тогда лучше? Как следует из названия, оно проходит более глубокую обработку при помощи гидрокрекинга. А на первых этапах его производство ничем не отличается от производства минерального масла. Из обычного минерального масла разнообразными физико-химическими методами удаляются нежелательные примеси, вроде соединений серы или азота, асфальтеновые (битумные) вещества и ароматические полициклические соединения, которые усиливают коксование и зависимость вязкости от температуры. Депарафинизацией удаляются парафины, повышающие температуру застывания масел. Однако понятно, что удалить все ненужные примеси таким методом невозможно — грубо говоря, это и служит причиной худших свойств «минералки». Обработка масла может продолжиться и дальше. Ведь остались еще ненасыщенные углеводороды, которые ускоряют старение масла из-за окисления, да и примеси тоже остались. Гидроочистка (воздействие водородом при высокой температуре и давлении) превращает непредельные и ароматические углеводороды в предельные, что увеличивает стойкость масла к окислению. Таким образом, масло, прошедшее гидроочистку, обладает дополнительным преимуществом. А что же гидрокрекинг? Это еще более глубокий вид обработки, когда одновременно протекает сразу несколько реакций. Каких? Удаляются все те же ненавистные серные и азотистые соединения, Длинные цепочки разрываются (крекинг) на более короткие с однородной структурой, места разрывов в новых укороченных молекулах насыщаются водородом (гидрирование). Отсюда и название – «гидрокрекинг». Таким образом, при гидрокрекинге налицо все признаки синтеза – создания из исходного сырья нового соединения, с новой структурой и свойствами. Поэтому гидрокрекинг часто называют НС- синтезом. Но не все так просто. Некоторые компоненты нефти, которые обычно считаются вредными, местами могут быть весьма ценными. Например, смолы, жирные и нафтеновые кислоты улучшают липкость и стойкость адсорбционной пленки масла и тем самым улучшают смазывающую способность масла. Некоторые соединения серы и азота обладают антиокислительными свойствами. Таким образом, при глубокой очистке масла некоторые его смазывающие, антиокислительные и антикоррозионные свойства могут ухудшиться. Эта неприятность исправляется специальными присадками, которые добавляют уже на маслосмесительных заводах.

Итак, гидрокрекинговые масла — это продукты перегонки и глубокой очистки нефти. Гидрокрекинг отбрасывает все «ненужное», ну а если захватывается что-то «полезное», необходимые свойства придаются с помощью присадок. Но четко отфильтровать ненужные примеси сложно — поэтому имеет место большее нагарообразование и «содействие» коррозии у гидрокрекинговых масел по сравнению «синтетикой». Гидрокрекинговое масло получается близким по качеству к «синтетике», но быстрее стареет, теряет свои свойства. Зато они обладают высоким индексом вязкости, противоокислительной стойкостью и стойкостью к деформациям сдвига, а от износа могут защищать даже лучше, чем синтетические. С другой стороны, «синтетика» более однородна в смысле линейности углеводородных цепей, что дает преимущества, например, в температуре замерзания. Есть еще один нюанс. Гидрокрекинг — процесс каталитический, как, впрочем, и синтез. Но если первый идет, например, на никеле, то второй — на углероде. Понятно, что углерод в этом смысле лучше, так масло будет избавлено от нежелательных примесей соединений катализаторов.

Самое интересное, что подавляющее большинство моторных масел, позиционируемых как полусинтетические, и даже полностью синтетические, являются ни чем иным, как гидрокрекинговыми маслами. Это общая тенденция крупнейших производителей масел. BP, Shell, Castrol, Mobil, Esso, Chevron, Fuchs построена на гидрокрекинге. Все масла южно-корейских фирм — только гидрокрекинг, обычно II группы.

Полусинтетика – это смесь минеральных и синтетических базовых масел, и может содержать в своем составе от 10 до 50 процентов «синтетики». Специальных требований к производителям полусинтетических смазочных материалов в отношении того, какое количество синтетического базового масла (синтетическог

www.drive2.ru

Масла температура застывания - Справочник химика 21

    Температура застывания масла. Температурой застывания масла называют температуру, при которой испытуемое масло в условиях опыта загустевает настолько, что при наклоне пробирки с масло.м под углом 45° уровень последнего остается неподвижны [c.192]

    Расход, вес. % на масло Температура застывания С [c.35]

    Предел кипения фракций в пересчете на атмосферное давление. °с Качества депарафинированного масла Температура застывания исходного рафината, °С  [c.226]


    Из изложенного следует, что определение температуры застывания масел является весьма косвенным показателем потери текучести. масел при снижении темцературы. Тем не менее, вследствие отсутствия других надежных методов оценки изменения подвижности масел, в спецификациях на различные масла температура застывания их является одним из основных показателей качества. [c.244]

    Масло Температура застывания, С Понижение температуры застывания в °С при добавке депрессоров к маслу  [c.116]

    Применение очень вязкого масла или масла, температура застывания которого слишком высока по сравнению с температурой запуска двигателя Поломка масляного пасоса или шестерен Забивка впускной системы масляного насоса или утечка в впускной системе Поломка масляных трубок Низкий уровень масла в картере Неправильное положение маслоприемника поплавкового типа, вызванное загрязнением его шарнира [c.478]

    Масло Температура застывания не выше, С [c.67]

    Индекс вязкости масла (температура застывания—15 °С) 92 92 86 [c.717]

    Собрать прибор для определения температуры застывания (рис. 75). В пробирку 1 налить охлаждающую смесь, в пробирку-муфту 2 — небольшое количество глицерина, в пробирку 3 — обезвоженное минеральное масло, температуру застывания которого нужно измерить. В пробирку 3 вставить термометр на 50° и укрепить его на резиновой пробке с вырезом. [c.218]

    Осевые масла не должны терять свою подвижность в условиях низких температур, так как в противном случае они не смогут подниматься по волокнам подбивочных концов или фитилей к шейкам осей. Поэтому для зимнего осевого масла температура застывания установлена не выше —40° С, а для северного помимо номинальной вязкости при 50° С нормируется вязкость при отрицательных температурах. [c.127]

    Смазка представляет собой авиамасло МК-22 по ГОСТ 1013—49 или масло МК из эмбенских нефтей (кинематическая вязкость при 100° С не менее 20 сст, коксуемость не более 0,8%, кислотное число не более 0,35 мг КОН на 1 г масла, температура застывания не выше минус 8° С, остальные нормы по ГОСТ 1013—49 для масла МК-22), загущенное натриевыми солями жирных кислот, с коллоидальным графитом. [c.302]

    Осевые масла должны обладать хорошей адсорбционной способностью и не терять подвижности в условиях низких температур. Иначе они не смогут подниматься по волокнам подбивочных концов или фитилей к шейкам осей. Поэтому для зимнего осевого масла температура застывания установлена не выше —40 С, а для [c.153]


    Масло Содержание присадки в-167 Б масле Температура застывания масла, °С  [c.222]

    Температура застывания масла. Температурой застывания масла называется такая температура, при которой уровень масла в пробирке диаметром 20 мм, установленной под углом 45°, остается неподвижным в течение 1 мин (ГОСТ 1533-42). В то же время при температуре на 2° выше температуры застывания мениск масла еще сдвигается. [c.239]

    При растворении холодильных агентов в маслах температура застывания понижается. При растворении фреона-22 в масле в состоянии насыщения температура застывания понижается, в зависимости от содержания фреона и сорта масла, на 15—35° С. [c.239]

    Температурой застывания называется та температура, при которой испытуемое масло в условиях опыта загустевает настолько, что при наклоне, пробирки с продуктом под углом 45° уровень продукта остается неподвижном 1 мин. Температура застывания зависит от состава масла. Температура застывания минерального масла тем выше, чем больше в нем тяжелых насыщенных углеводородов. Застывание наступает в результате увеличения вязкости, или, что то же самое, в результате уменьшения текучести масла с понижением температуры. Чем ниже температура, при которой работает механизм, тем ниже должна быть и температура застывания. В производстве продуктов разделения воздуха масла, применяемые для смазки цилиндров детандеров, эксплуатируются при низких температурах, поэтому температура застывания для них является важным показателем. [c.101]

    На рис. 1 показана зависимость температуры застывания смеси, состоящей из 10% остаточного масла (температура застывания —16°С) и 90% трансформаторного масла и загущенной низкомолекулярным полиизобутиленом, от температуры застывания трансформаторного масла. Из этого рисунка видно, что температура застывания загущенной основы сильно зависит от температуры застывания легкого компонента. Это объясняется максимальным содержанием его в смеси- Добавление депрессора к этим смесям позволяет снизить температуру застывания смеси на 5—6 градусов. Зависимость температуры застывания загущенной основы, содержащей депрессор, от температуры застывания остаточного компонента невелика. Так, при изменении температуры застывания остаточного компонента в пределах от —9 до —18 °С температура застывания смеси снижается только на 2 градуса. [c.116]

    Механизм действия депрессорных присадок не может считаться в полной мере изученным, несмотря на большое количество работ, посвященных этому вопросу. Чтобы понять, как действует депрессорная присадка и почему при добавлении ее к маслу температура застывания его снижается, необходимо учитывать, что кристаллы парафина, выделяющиеся из масла при охлаждении образуют в нем кристаллическую решетку, которая как в сотах заключает в себе жидкую фазу. Поэтому, несмотря на то, что парафина в масле может быть всего несколько процентов, оно все же застывает и теряет свою подвижность. [c.50]

    Кислотное число, мг КОН на 1 г масла Температура

www.chem21.info

ВСЁ про масло (часть 2) — DRIVE2

Часть 1

Группы 3-6 считаются сейчас синтетическими маслами. Идеала, как видно, не существует (о новых GTL-маслах см. чуть ниже)

Используемые базовые масла и пакеты присадок определяют разницу в свойствах конкретных моторных масел.

Например, даже полная синтетика Castrol может быть как топовой линейки EDGE, так и более дешёвой Magnatec. Также даже полная синтетика Mobil может обладать разными свойствами и ценой, в том числе иметь разницу по износу: olerox.com/MobilOil.jpg

Вопрос двойной терминологии некоторых слов: о синтетичности с точки зрения состава или о синтетичности с точки зрения свойств? Маркетологи (из понятных соображений) всё больше налегают на второй термин, что позволяет им массово продавать гидрокрекинговые масла малосведущим потребителям как «синтетические».

И у гидрокрекинга, и у PAO, и у эстеров есть набор индивидуальных недостатков.

Например, PAO базовые масла (группы 4), сделанные из газа сами по себе плохо растворяют присадки и плохо смазывают, что лечится введением других базовых масел групп 3 и 5. Да и индекс вязкости (до 140) отстаёт от гидрокрекинга (до 180). Лечится с помощью VII, но это тоже не панацея.

Гидрокрекинговые базовые масла (группы 3) сильнее угорают, сильнее окисляются и имеют более слабые низко и высокотемпературные свойства, хотя последние поколения гидрокрекинговых масел весьма хороши. Недостатки лечатся например пакетами присадок или традиционным добавлением PAO в масла 503.01 или 504.00/507.00, что позволяет уменьшить Noack и Pour point в конечном продукте.

Оптимизированные полиолэстеры последнего поколения от Croda почти не имеют недостатков предшествующих эстеров, однако очень высокая цена .

Оптимальное решение было внедрено только недавно в виде GTL-масел, которые тоже (как и PAO) синтезируются из газа (GTL=Gas-To-Liquid), поэтому обладают лучшими свойствами PAO, но по структуре ближе к гидрокрекинговым маслам без явных недостатков тех, поэтому и относятся к группе 3, а не группе 4 или 6. Хотя, замечу, и PAO масла, и GTL-масла появились ещё в Третьем Рейхе, да и в послевоенном СССР GTL масла немного выпускались как спецпродукт.

О новейших GTL (gas to liquids) маслах.
Массово появились только у Shell (под американским брендом Pennzoil) с недавним запуском завода GTL Shell в Катаре (www.shell.com.ru/home/con…ness_tpkg/pearl/overview/ )
Хотя синтетическое топливо делалось ещё в нацистской Германии, а отдельные заводы GTL есть и у других корпораций, массовое появление GTL масел рентабельно только после удорожания нефти хотя бы до 80$/баррель.
.
Стабильно отличные свойства GTL-масел:
— Отличные смазывающие свойства
— отличные температурные свойства, температура застывания менее -50
— низкая окисляемость
— низкая гигроскопичность
— неполярно
— низкая испаряемость (Noack менее 6 !)
— средняя цена.
Формально GTL-относятся к третьей группе, но не имеют недостатков гидрокрекинговых масел по температурным свойствами, окисляемости, испаряемости: 5,5,4,1,1,5,3,
Таким образом, GTL-почти идеальное базовое масло, в отличие от однобоких PAO и эстеров, а отсутствие полярности исправляется небольшой добавкой в GTL эстеров(всё реже) или алкилированных нафталинов (всё чаще, например в Pennzoil Ultra API SN).

Например, если такие масла как Кастрол, Мобил, Мотюль, Ликви Моли, Шелл и т.п. экономят на присадках, на качественных полимерных загустителях, ПАО, эстерах, не добавляют или не добавляют не достаточно модификаторов трения, при этом цены на них откровенно завышены… То есть такие масла, которые имея цену в два раза ниже, при этом база у них дороже, минимум загустителей, процент ПАО и эстеров высокий, щелочное повышена дорогим способом, модификаторов трения не пожалели, так сказать бьют по воробьям из всех пушек. Эти масла скорее имиджевые и со временем, видимо, утратят свои супер способности, когда наберут достаточно рекламы и покупателей.
Как говорилось выше, чисто ПАО уступает по смазывающим свойствам современным крекингам. Но! ПАО с добавлением эстеров превосходит любые крекинги. Плюсы у ПАО также в части стабильности к старению, температурным колебаниям и к смазывающим свойствам. Именно по этой причине обычный 0w-30 крекинг сильно уступает ПАО (5w-50) на морозе, при -30 -40 градусах. А, казалось бы, 0w-30 должен быть более текучим на морозе, чем 5w-40(50).

Также, на рынке, очень много недобросовестных разрекламированных производителей, которые обычные минеральные гидрокрекинги выдают за полную синтетику и продают по цене ПАО, это касается и Мотюлей и Ликви Молей и Мобилов и Кастролов и Тотале и Эльфов и т.д. Как говорилось выше, полная синтетика не будет иметь достаточно положительных сторон без крекинговой основы. Но, чем больше процент синтетики (обычно не более 50% по анализам), тем масло более стабильнее и сильнее. Обычный маркетинг. Делают себе имя (бренд) хорошими синтетическими маслами, потом начинают выпускать откровенную халтуру в виде гидрокрекинга с бедным пакетом присадок по завышенной цене…

3. Как оценивать масла? По характеристикам. А откуда узнать характеристику? Это уже второй вопрос, тут в помощь идет интернет. Обычно в паспорте производителя, характеристики не очень совпадают с реальными анализами свежего масла или бывают, что одно и тоже масло сильно различаются по характеристикам и базам, в зависимости от партии. Опять вопрос к производителям. Хватит халтурить! Хорош маркетинг!

— Вязкость при 40 и 100 градусах говорит о вязкости базы.

— Индекс вязкости, находится соотношением вязкости при 40С и 100С градусах. По нему можно узнать также о базе. У синтетических ПАО масел с добавлением эстеров индекс вязкости обычно около 155-165. У гидрокрекинговых масел с добавлением большого количества полимерных загустителей индекс вязкости обычно около 170-185.
— Щелочное число. Щелочное число показывает, сколько мг гидроокиси калия потребовалось, чтобы быть эквивалентной всем щелочным компонентам в 1 гр масла. Чем выше щелочное число, тем больше проживет масло, отмоет грязи, будет дольше сопротивляться старению, больше продуктов отхода удерживать в себе и т.д. Опять же, многое зависит от базы. ПАО масло с щелочным числом 7 будет гораздо дольше держать щелочное число нежели гидрокрекинговое масло с щелочным числом 10-11 мг КОН на 1г, а эстеровое масло соответственно еще дольше.

— Кислотное число. Кислотное число показывает, сколько щелочи потребовалось, чтобы нейтрализовать слабые и сильные кислоты в 1 мг масла. Также, чем меньше данное число, тем выше долгожитие масла.

— Зольность. В основном показывает количество противоизносных и моющих присадок. Чем их больше, тем больше зольность, т.к. в них содержатся металлы. Для современных двигателей зольность не должен превышать 1.5-1,8% для бензиновых двигателей и 1.8-2% для дизельных.

— Температура застывания (кристализации). Показывает, насколько синтетичная база или количество антидепрессантов. У чистой гидрокрекинговой базы 3 группы температура застывания -17С -23С градусов и добавляя в базу антидепрессанты дотягивают температуру застывания до -36С -42С. У ПАО и эстеровых масел обычно температура застывания от -45С до -65С.

— Температура вспышки. Это пожалуй основной параметр на которую следует опираться при выборе масла для турбодвижков. Ибо, именно при сгорании выделяются тяжелые углеводородные соединения (коксование, лаковые отложения), также при высоких температурах масло начинает активно окисляться и нитрировать, происходит полимеризация загустителей (загущение). Обычно у гидрокрекинговых масел температура вспышки от 190 до 220С. У ПАО и эстеровых масел от 230 до 260С. У ГТЛ масел примерно 232С.

— Динамическая вязкость при -30С. Прокачиваемость. Обычно зависит от вязкости базы или его синтетичности, т.е. термостабильность. Показывает прокачиваемость масла при -30С. Чем ниже данное число от 6600 мПа*с, тем более термостабильнее масло. Для зимних синтетических масел оно обычно равно от 2800 до 5400 мПа*с.

— Испаряемость NOACK. Также является основным показателем при выборе масла. Показывает сколько процентов испарится масла в течении 1 часа при температуре 250С. Чем ниже данный показатель %, тем более синтетичнее и термостабильнее масло. Также показывает, на сколько меньше будет угар, продукты сгорания в масле и количество гомна на стенках различных частей двигателя.

По количеству противоизносных и моющих присадок явный лидеры Татнефть, NGN, Addinol (полнозольники).
Количество эстеров можно узнать по температуре застывания, по температуре вспышки, по испаряемости NOACK, по количеству содержания продуктов окисления и самое главное по спектральным анализам. Обычно глаза набиваются и по обычному химическому анализу сразу видишь количество эфиров и ПАО.

4. Щелочное число, индексы вязкости, динамическая вязкость (при 40 градусах, при 100 градусах, при -30 градусах (динамическая вязкость), температура замерзания, температуру вспышки, содержание противоизносных присадок, содержание моющих присадок (их количество и соотношение. Бывают Кальциевые, а бывают на Кальциево-магниевой основе. По сути магний не моет, а всего лишь помогает Кальцию бороться с высокими кислотами), содержание модификаторов трения, кислотное число, зольность. По этим параметрам можно определить, сколько там процент содержания ПАО, эстеров и на каком именно базе она сделана. Часто анализы масел очень разнятся с этикетками.

Еще раз что такое:
 Щелочное число. Это число показывает на сколько км пробега хватит масла. Если данное число уменьшилось на 50% от исходного, то это означает, что масло умерло или начинает резко умирать. Если кислотное число превысило щелочное, то это означает, что двигатель внутри уже разлагается. Кислота разъедает все части двигателя. Уже кислотность, которая вырабатывается при температурных нагрузках, не нейтрализуется щелочью, образовывается шлак, лак, нагар и оседает в частях двигателя затрудняя ее работу. Самое высокое, данный параметр достигает до 10-12 мг KOH/г, в среднем 7-8 мг КОН/г. Чем больше, тем лучше. Обычно это число снижается к 3-4 мг КОН/г к 8000 км пробега, а к 10 тыс. уже это число падает до 2. Поэтому лучше стараться менять масло на 7-8 тыс. км.

 Индекс вязкости. Чем больше вязкость, тем лучше. Вязкость защищает детали от трения. Обычно, производители делают дешевые кряки, добавляют туда дешевые загустители, которые при относительно не высоких температурах теряют вязкость, угарают, а при низких температурах просто застывают. Если вязкость чрезмерно высокая, тогда это плохо, до трущихся деталей попросту масло не будет доходить. Если, например, вязкость масла при 100 градусах около 14-17 мм/с, а на морозе, при -30 около 3100, это означает, что масло очень хорошее, на хорошей базе, с высоким содержанием ПАО и эстеров. Обычно, обычные кряки имеют индекс вязкости при 100 градусах около 8-13 мм/с, а на морозе, при -30 около 4500-6500. Это означает, что при -30 масло попросту не работает. Холодный запуск будет убивать двигатель. Чем больше вязкость при 100 градусах (в зависимости от конкурентов) и меньше при -30, тем лучше. Дешевые крекинговые масла делают изначально менее вязкими, а затем добавляют туда дешевые загустители, которые в свою очередь, быстро умирают и застываю в морозе.

 Температура замерзания. Один из важных показателей, характеризующий работу масла в зимнее время, и по данному показателю тоже видно, сколько там содержится ПАО или эстеры. Чем ниже температура, тем лучше.

 Температура вспышки. Этот самый важный показатель характеризует масло на то, на сколько он будет гореть при высоких температурах. Если компрессия в норме, а масло становится меньше, значит она угарает и это плохо, т.к. при горении образуется лаковые, коксовые, смолистые и другие тяжелые углеродные соединения, которые закоксовываются на трущихся деталях и забивают (закупоривают) тоненькие щели, после чего масло не будет доставать до нужных, отдаленных от маслонасоса участков двигателя. Также забиваются маслосъемные кольца и масло начинает уходить через камеру сгорания или продукты горения постепенно выталкивают кольца из канавок поршней и начинается усиленный износ и полировка цилиндров.

Противоизносные присадки ZDDP (zinc dialkil dithiophosphate). Бор, цинк, барий, фосфор, натрий, вольфрам и т.д. Связующим элементом является сера. Количество содержания которых, также играет важную роль. Чем больше, тем лучше, до определенных пределов.
Слишком большое количество ZDDP создает толстую подушку и начинает играть роль абразива увеличивая износ, также большое количество ZDDP плохо ложится на вертикальном раскаленном стенках цилиндра. Большое количество ZDDP обычно применяют в трансмиссионных маслах, где важно защита от задиров и ударно-сдвиговых нагрузок.

Модификаторы трения – это присадки регулирующие фрикционные свойства – коэффициент трения смазываемых поверхностей. Самые основные это Молибден и Бор. От Молибдена, также зависит, то, насколько двигатель будет работать тихо (шепотом) и экономично. Но Молибден сам по себе, дорогой в производстве. Он не так сильно играет противоизносную роль, но может уменьшить износ до 20-30% или увеличить, если его слишком много. Молибден бывает двух типов. Дисульфид молибдена, который образовывает отложения и дает темный цвет и переработанный сложный молибден. Поэтому не в каждом масле он содержится достаточно, а во многих маслах его вообще нет. Бор также является и противоизносным присадком.

Моющие присадки. К этим присадкам можно отнести кальций, магний для борьбы с кислотностью и вымывания продуктов горения, они также имеют и диспергирующие свойства.

И

www.drive2.ru

Технические характеристики моторных масел: свойства, вязкость

Характеристики моторных масел регламентируют стандарты международного уровня.

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

  • кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
  • динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300

 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

-

-

5W

3500 при -25

30000 при -30

3,8

-

-

10W

3500 при -20

30000 при -25

4,1

-

-

15W

3500 при -15

30000 при -20

5,6

-

-

20W

4500 при -10

30000 при -15

5,6

-

-

25W

6000 при -5

30000 при -10

9,3

-

-

Классы вязкости летних моторных масел SAE J300

Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

  • S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
  • C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
  • EC – Energy Conserving. Категория описывает энергосберегающие масла.

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

rolfoil.ru

Температура застывания масел — Студопедия

При определенных значениях температуры при охлаждении масла становятся нетекучими. Переход в нетекучее состояние вы­зывается либо выпадением в процессе понижения температуры масла кристаллов высокоплавких углеводородов и образованием из них кристаллического каркаса (рис. 6.1, а), либо сильным уве­личением его вязкости.

Применение масла, потерявшего подвижность, недопустимо, поэтому стандарты ограничивают их максимальные температуры застывания.

В процессе производства принимаются меры по снижению тем­пературы застывания масел. К таким мерам относятся удаление наиболее высокоплавких углеводородов из масел при помощи

Рис. 6.1. Схемы выпадения кри­сталлов твердых углеводородов при охлаждении масла:

а — образование кристаллического каркаса в масле без присадки; 6 — масло с введенным депрессатором

депарафинизации и введение в очищенные масла депрессорных присадок (рис. 6.1, б). Например, введение депрессатора АзНИИ в количестве 0,5 % снижает температуру застывания масла на 15... 20°С.

Иногда снижение температуры застывания обеспечивается с помощью многофункциональных присадок АзНИИ-ЦИАТИМ-1 и ПМА-Д.

Вязкость[с1] масел

Вязкость — одно из важнейших свойств масла, имеющее мно­гостороннее эксплуатационное значение.

От вязкости масла зависят режим смазывания пар трения, от­вод тепла от рабочих поверхностей, уплотнение зазоров, энерге­тические потери в двигателе, его эксплуатационные качества, а также запуск двигателя, прокачивание масла по системе смазки, охлаждение трущихся деталей и их очистка от загрязнения.


Масло с чрезмерно низкой вязкостью легко выдавливается из зазоров между деталями, что ведет к повышенному износу меха­низмов и увеличению расхода смазочного материала. При слиш­ком высокой вязкости, с одной стороны, затрудняется подача масла в зазоры, следствием чего также является интенсивный износ ме­ханизмов, а с другой стороны, возрастает расход энергии на отно­сительное перемещение смазанных или погруженных в масляную ванну деталей. Поэтому вязкостные свойства моторных масел опре­деляются в стандартах значениями вязкости при 100 и 0 °С (а для некоторых масел при —18°С) и индексом вязкости (ИВ), т.е. ин­тенсивностью изменения вязкости с повышением или понижением температуры.

Увеличение вязкости масла с понижением температуры обу­словливает значительные трудности при эксплуатации автомоби­лей, особенно в зимнее время, усложняя пуск двигателей.


Надежный пуск карбюраторных двигателей осуществляется при частоте вращения коленчатого вала 35...50 об/мин (при темпера­туре окружающего воздуха —10... +20 °С), а дизельных двигателей с различным способом смесеобразования — при средней частоте вращения 100...200 об/мин (при температуре до 0°С).

Индекс вязкости автомобильных масел должен быть не менее 90.

Для получения масел с хорошими вязкостно-температурными свойствами в базовые маловязкие масла (с вязкостью при 100°С менее 5 мм2/с) добавляют 3...4 % вязкостных присадок, например полиизобутилена. Полученные таким образом масла, называемые загущенными, обладают высоким ИВ (115... 140).

Загущенные масла имеют значительно лучшие низкотемпера­турные свойства, что особенно важно при пуске двигателей в холодное время и для снижения пусковых износов. Использование для автомобильных двигателей загущенных внесезонных масел, обеспечивающих надежную их работу, дает существенный техни­ко-экономический эффект: на 3... 7 % повышается мощность дви­гателя, а также снижаются механические потери на трение.

studopedia.ru

Плотность и свойства растительных масел

Плотность растительных масел в зависимости от температуры

В таблице даны значения плотности растительных масел в зависимости от температуры в интервале от -20 до 150°С.

Указана плотность следующих растительных масел: масло виноградное из косточек, кукурузное, кунжутное масло, подсолнечное из семян подсолнечника №8931, подсолнечное рафинированное, соевое амурское и рафинированное, хлопковое масло из семян хлопка №108, соломас пищевой из подсолнечного масла и из хлопкового масла.

Плотность растительных масел при комнатной температуре изменяется в пределах от 850 до 935 кг/м3. По данным таблицы видно, что при нагревании масла его плотность уменьшается. Следует отметить, что плотность указанных масел меньше этой величины у воды даже при отрицательных температурах масла (-20°С).

Самым легким из рассмотренных здесь маслом, является не рафинированное подсолнечное — плотность подсолнечного масла равна 916 кг/м3 при температуре 20°С.

Плотность растительных масел при 15°С

Представлены значения плотности некоторых растительных и эфирных масел при температуре 15°С.

В таблице указана плотность следующих масел: апельсиновое, арахисовое, масло грецких орехов, кунжутное (сезамовое), масло лесных орехов и фундука, лимонное, миндальное, подсолнечное масло и соевое.

Плотность рафинированного подсолнечного масла изменяется в пределах от 925 до 927 кг/м3. Следует отметить, что апельсиновое масло, по данным таблицы, имеет плотность меньше подсолнечного. Средняя плотность апельсинового масла равна 849 кг/м3.

Температура застывания растительных масел

В таблице приведены значения температуры застывания растительных масел. Указана температура застывания следующих масел: арахисовое, масло грецких орехов, кунжутное, масло лесных орехов и фундука, миндальное, подсолнечное масло и соевое.

Как видно по данным таблицы температура застывания рассмотренных масел всегда ниже нуля. Легче всего застывает арахисовое масло — оно начинает твердеть при температуре -3°С.

Теплоемкость растительных масел в зависимости от температуры

Значения удельной теплоемкости растительных масел представлены при температуре от -10 до 120°С.

В таблице дана теплоемкость следующих растительных масел: масло виноградное из косточек, кукурузное, кунжутное масло, подсолнечное из семян подсолнечника №8931, подсолнечное рафинированное, соевое амурское, хлопковое масло из семян хлопка №108, рафинированное, соломас пищевой из подсолнечного масла и из хлопкового масла, соломас технический из подсолнечного масла. Следует отметить, что теплоемкость растительного масла при нагревании увеличивается.

Теплоемкость эфирных масел при 20°С

В таблице представлены значения теплоемкости следующих эфирных масел при комнатной температуре: масло анисовое, гераниевое, кориандровое, мятное.

Теплопроводность растительных масел в зависимости от температуры

В таблице приведены значения теплопроводности растительных масел в зависимости от температуры в интервале от -20 до 120°С.

Приводятся значения теплопроводности таких масел, как масло виноградное из косточек, кукурузное, кунжутное, подсолнечное из семян подсолнечника №8931, подсолнечное рафинированное, соевое амурское, хлопковое масло из семян хлопка №108, рафинированное, соломас технический из подсолнечного масла. Необходимо отметить, что теплопроводность растительного масла при повышении его температуры уменьшается.

Теплопроводность некоторых растительных масел

В таблице указаны значения коэффициента теплопроводности некоторых растительных масел при температуре от 4 до 10°С.

Дана теплопроводность следующих масел: масло лимонной кожуры, мускатного ореха, оливковое масло, арахисовое, маковое, кунжутное, масло сладкого миндаля.

Источники:

  1. Теплофизические характеристики пищевых продуктов. Справочник.  Гинзбург А.С. и др. Москва, 1980. — 288 с.
  2. Чубик И.А., Маслов А.М. Справочник по теплофизическим характеристикам пищевых продуктов и полуфабрикатов.

thermalinfo.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта