Ключ к знанию

Схема работы двухтактного двигателя


Принцип работы двухтактного двигателя

На сегодняшний день существуют два типа двигателей:

  • четырехтактные;
  • двухтактные.


Рассмотрим принцип работы двухтактного двигателя. Все рабочие циклы в двухтактном (процесс впуска топлива и выпуск выхлопных газов, продувка) осуществляются за два основных такта за один оборот коленвала. У данного типа двигателей отсутствуют впускной и выпускной клапаны. Эту роль выполняет поршень, который при своих движениях поочередно закрывает продувочные, выпускные и впускные окна. Это делает данный тип двигателей конструктивно более простыми.

Возможности и преимущества двухтактных

Теоретически мощность двигателя данного типа, при одинаковых размерах цилиндра и скорости вращения вала, в два раза выше, чем у 4х-тактного благодаря увеличению числа рабочих циклов. Но в связи с неполным использованием хода поршня при расширении, худшее освобождение цилиндра от выхлопных газов и частичной затраты мощности на продувку приводят к увеличению мощности двигателя лишь на 60-70 процентов.

Как он устроен

Устройство двигателя состоит из картера, в котором с двух сторон на подшипниках установлен коленвал и цилиндр. В цилиндре перемещается поршень, который представляет из себя металлический стакан, на котором в канавки вложены пружинные поршневые кольца. Эти кольца не пропускают газы между стенкой цилиндра и поршнем. В поршне имеется металлический стержень — палец, который соединяет его с шатуном. Шатун передает возвратно-поступательные движения поршня во вращательные движения коленвала.

Для смазки подшипников и трущихся поверхностей двухтактного двигателя используется топливная смесь, в которую подмешивают немного масла. Смесь топлива с маслом попадает как в кривошипную камеру, так и в цилиндр. В этих узлах смазки нигде нет, так как она бы все равно смылась топливной смесью. Именно поэтому масло добавляют к бензину в определенной пропорции. Для этого используется специальный тип масла, предназначенный специально для двухтактных двигателей. Такое масло способно выдерживать высокую температуру, а при сгорании с топливом оставлять после себя наименьшее количество зольных отложений.

Как он работает

Рассмотрим принцип работы. Полный рабочий цикл в двухтактном двигателе внутреннего сгорания происходит за два такта:

  1. сжатие;
  2. рабочий ход.

Такт первый

Сжатие. Поршень двигается из положения нижней мертвой точки в положение к верхней, при этом закрывает сначала продувочное, а потом выпускное окно. После этого в цилиндре происходит сжатие поступившей в него раннее топливной смеси. Вместе с этим в кривошипной камере под поршнем, после перекрывания продувочного окна, создается разряженное пространство. Под действием этого разряжения через впускное окно в кривошипную камеру из карбюратора попадает горючая смесь.

Такт второй

Рабочий ход. Когда поршень установлен в положении верхней точки, сжатая топливная смесь поджигается от свечи электрическим разрядом, в результате чего давление и температура газов резко увеличивается. Под действием этого расширения поршень двигается в положение нижней мертвой точки — расширившийся газ осуществляет полезную работу. При этом, опускаясь вниз, он образует большое давление в кривошипной камере, закрывающее клапан. После закрытия клапана газы не могут повторно попасть во впускной коллектор и карбюратор.

При достижении поршнем выпускного окна, оно откроется и начинается выпуск выхлопных газов, давление их в цилиндре снижается. Двигаясь дальше, поршень открывает продувочное окно, и сжатые горючие газы в кривошипной камере проходит по каналу в цилиндр, продувая его от остатка газов. После этого цикл повторяется заново.

Заключение

Стоит сказать пару слов о зажигании. В связи с тем, что топливу для воспламенения необходимо время, разряд на свече зажигания должен появиться раньше, чем поршень дойдет до верхней точки, поэтому, чем быстрее двигается поршень, тем раньше должна быть искра. Бывают электронные и механические устройства, способные изменять угол зажигания, изменяющейся при разных частотах вращения.

znanieavto.ru

Двухтактный двигатель | Мото-мануалы и инструкции

Простейший двухтактный двигательЦикл работы двухтактного двигателя

Двухтактный двигатель наиболее прост с технической точки зрения: в нем поршень выполняет работу распределительного органа. На поверхности цилиндра двигателя выполнено несколько отверстий. Их называет окнами, и они принципиальны для двухтактного цикла. Предназначение впускных и выпускных каналов достаточно очевидно — впускное окно позволяет топливовоздушной смеси попасть в двигатель для последующего сгорания, а выпускное окно обеспечивает отвод полученных в результате сгорания газов из двигателя. Продувочный канал служит для обеспечения перетекания из кривошипной камеры, в которую она поступила ранее, в камеру сгорания, где происходит сгорание. Здесь возникает вопрос, почему смесь поступает в пространство картера под поршнем, а не непосредственно в камеру сгорания над поршнем. Чтобы понять это, следует отметить, что в двухтактном двигателе кривошипная камера выполняет важную второстепенную роль, являясь своего рода насосом для смеси.

 Она образует собой герметичную камеру, закрытую сверху поршнем, из чего следует, что объем этой камеры, а, следовательно, и давление внутри нее, изменяется, поскольку поршень перемешается возвратно-поступательно в цилиндре (по мере того как поршень двигается вверх, объем увеличивается, и давление падает ниже атмосферного, создается разрежение; наоборот, при движении поршня вниз объем уменьшается, и давление становится выше атмосферного).

Впускное окно на стенке цилиндра большую часть времени закрыто юбкой поршня, оно открывается, когда поршень приближается к верхней точке своего хода. Созданное разрежение всасывает свежий заряд смеси в кривошипную камеру, затем, по мере того как поршень движется вниз и создает давление в кривошипной камере, эта смесь вытесняется в камеру сгорания через продувочный канал.

Данная конструкция, в которой поршень играет роль распределительного органа по очевидным причинам, является самой простой разно¬видностью двухтактного двигателя, число перемеoающихся частей в ней не значительно. Во многих отношениях это является значительным преимуществом, однако оставляет желать лучшего с точки зрения эффективности (КПД). В свое время почти во всех двухтактных двигателях поршень выполнял роль органа распределения, но в современных конструкциях эта функция отводится более сложным и эффективным устройствам

Улучшенные конструкции двухтактного двигателя

Влияние на течение газа Одна из причин неэффективности выше-описанного двухтактного двигателя-неполная очистка от отработавших газов. Оставаясь в цилиндре, они мешают проникновению всего объема свежей смеси, и, следовательно, снижают мощность. Также существует связанная с этим проблема: свежая смесь из окна продувочного канала поступает прямо в выпускной канал, и, как было упомянуто ранее, чтобы это минимизировать, окно продувочного канала направляет смесь вверх.

Дефлекторная продувка

Поршни с дефлектором

Эффективность очистки и топливная экономичность могут быть улучшены за счет создания более эффективного течения газа внутри цилиндра. На ранней стадии усовершенствование двухтактных двигателей было достигнуто за счет придания днищу поршня особой формы для отклонения смеси от впускного канала к головке цилиндра — данная конструкция получила название поршня с дефлектором». Однако использование поршней с дефлектором на двухтактных двигателях было непродолжительным в связи с проблемами расширения поршня. Тепловыделение в камере сгорания двухтактного двигателя обычно выше, чем у четырехтактного, потому что сгорание происходит вдвое чаше, кроме того, головка, верхняя часть цилиндра и поршня являются наиболее нагретыми частями двигателя. Это приводит к проблемам, связанным с тепловым расширением поршня. Фактически, поршню при изготовлении придается такая форма, чтобы он слегка отличался от окружности и был конусным кверху (овало-бочкообразный профиль), таким образом, когда он расширяется при изменении температуры, он становится круглыми и цилиндрическим. Добавление несимметричного металлического выступа в виде дефлектора на днище поршня, изменяет характеристики его рас¬ширения (если поршень будет чрезмерно расширяться в неправильном направлении, его может заклинить в цилиндре), а также приводит к его утяжелению со смещением массы от оси симметрии. Этот недостаток стал намного более очевидным по мере того, как двигатели усовершенствовались для работы при более высоких скоростях вращения.

Типы продувок двухтактного двигателя

Петлевая продувка

Поскольку у поршня с дефлектором слишком много недостатков, а плоское или слегка скругленное днище поршня не сильно влияет не движение поступающей смеси или вытекающих отработавших газов, был необходим другой вариант. Он был разработан в ЗО-х годах XX века доктором Е. Шнурле, который его изобрел и запатентовал (хотя, по общему признанию, он первоначально спроектировал его для двухтактного дизельного двигателя). Продувочные окна расположены напротив друг друга на стенке цилиндра и направлены под углом вверх и назад. Таким образом, поступающая смесь наталкивается на заднюю стенку цилиндра и отклоняется вверх, затем, образуя наверху петлю, падает на отработавшие газы и способствует их вытеснению через выпускное окно. Следовательно, хорошая продувка цилиндра может быть получена подбором расположения продувочных окон. Необходимо тщательно прорабатывать форму и размер каналов. Если сделать канал слишком широким,поршневое кольцо, минуя его,может попасть в окно и заклинить, тем самым вызывая поломку. Поэтому размер и форма окон выполняется так, чтобы гарантировать безударный проход колеи мимо окон, а некоторые широкие окна соединены в середине перемычкой, служащей опорой для колец. В качестве еще одного варианта можно предложить использование большего числа окон меньших размеров.

На данный момент существует множество вариантов расположения, численности и размеров окон, сыгравших большую роль в увеличении мощности двухтактных двигателей. Некоторые двигатели снабжены продувочным и окнами, служащими для единственной цели — улучшения продувки, они открываются незадолго до открытия главных продувочных окон, которые подают большую часть свежей смеси. Но пока это всё. что можно сделать для улучшения газообмена без использования дорогих в производстве деталей. Чтобы продолжать улучшать характеристики, необходимо более точно управлять фазой наполнения.

Лепестковый клапан Suzuki Lets TWСхема работы лепесткового клапана

Лепестковые клапана

В любой конструкции двухтактного двигателя улучшение КПД и топливной экономичности означает, что двигатель должен работать более эффективно, это требует сгорания максимального количества топлива (следовательно, получения максимальной мощности) на каждом рабочем такте двигателя. Остается проблема сложного удаления всего объема отработавшего газа и заполнения цилиндра максимальным объемом свежей смеси. До тех пор, пока процессы газообмена совершенствуются в рамках двигателя с поршнем в роли органа распределения, нельзя гарантировать полную очистку от отработавших газов, остающихся в цилиндре, при этом нельзя увеличить объем поступающей свежей смеси, чтобы способствовать вытеснению отработавших газов. Решением может служить заполнение кривошипной камеры большим количеством смеси за счет увеличения ее объема, но на практике это приводит к менее эффективной продувке. Увеличение эффективности продувки требует уменьшения объема кривошипной камеры и, таким образом, ограничения пространства, предназнеченного для заполнения смесью. Так что компромисс уже найден, и следует искать другие способы улучшения характеристик. В двухтактном двигателе, в котором роль органа газораспределения отведена поршню, часть топливовоздушной смеси, поданной в кривошипную камеру, неизбежно будет потеряна по мере того, как поршень начинает двигаться вниз в процессе сгорания. Эта смесь вытесняется обратно во впускное окно и, таким образом, теряется. Необходим более эффективный способ управления поступающей смесью. Предотвратить потери смеси можно путем использования лепесткового или дискового (золотникового) клапана или их комбинации.

Лепестковый клапан состоит из металлического корпуса клапанов и закрепленного на его поверхности седла с уплотнением из синтетического каучука. Два или более лепестковых клапана закреплены на корпусе клапанов, при нормальных атмосферных условиях эти лепестки закрыты. Кроме того, для ограничения перемещения лепестка установлены ограничительные пластины по одной на каждый лепесток клапана, служащие для предотвращения его поломки. Тонкие лепестки клапана обычно изготавливаются из гибкой (пружинной) стали, хотя все более популярными становятся экзотические материалы на основе фенольной смолы или стеклотекстолита.

Клапан открывается за счет изгиба лепестков до ограничительных пластин, которые спроектированы таким образом, что открываются, как только появляется положительный перепад давления между атмосферой и кривошипной камерой; это происходит, когда движущийся вверх поршень создает разрежение в картере, Когда смесь подана в кривошипную камеру, и поршень начинает двигаться вниз, давление внутри картера возрастает до уровня атмосферного, и лепестки прижимаются, закрывая клапан. Таким образом, подается максимальное количество смеси, и предотвращаются любые обратные выбросы. Дополнительная масса смеси более полно заполняет цилиндр, и продувка происходит более эффективно. Сначала лепестковые клапана были приспособлены для использования на существующих двигателях с поршнем в роли органа газораспределения, это привело к существенному улучшению эффективности двигателей. В отдельных случаях производители выбирали комбинацию двух конструкций: одной — когда двигатель с поршнем в роли органа газораспределения. дополненный лепестковым клапаном для продолжения процесса наполнения через дополнительные каналы в кривошипной камере после того, как поршень перекроет основной канал, если уровень давления в картере двигателя позволяет это. В другой конструкции на поверхности юбки поршня выполнялись окна, чтобы окончательно избавиться от контроля, который поршень имеет над каналами; в таком случае они открываются и закрываются исключительно под воздействием лепесткового клапана. Развитие этой идеи означало, что клапан и впускной канал могут быть перенесены из цилиндра в кривошипную камеру. Устрашающие предостережения, что на лепестках клапана образуются трещины и лепестки могут попасть внутрь двигателя, оказались в значительной степени необоснованными. Перемещение впускного канала предоставляет ряд преимуществ, главное из которых связано с тем. что течение газа в полость картера становится более свободным.и,следовательно, большее количество смеси может поступить в кривошипную камеру. Этому до некоторой степени способствует импульс (скорость и вес) поступающей смеси. При переносе впускного канала из цилиндра можно продолжать повышать эффективность путем смешения продувочного окна (окон) в оптимальное для продувки положение. Безусловно, за последние годы основное расположение лепестковых клапанов было подвергнуто тщательному исследованию, и появились сложные конструкции. содержащие двухступенчатые лепестки и многолепестковые корпуса клапанов. Последние разработки в области лепестковых клапанов связаны с материалами, используемыми для лепестков, и с расположением и размером лепестков.

Принцип действия дискового клапана

Дисковые клапана (золотниковое распределение)

Дисковый клапан состоит из тонкого стального диска, закрепленного на коленчатому валу шпонкой

 или шлицами таким образом, что они вращаются вместе, Он располагается снаружи впускного окна между карбюратором и крыш¬кой картера так. чтобы в нормальном состоянии канал перекрывался диском, Чтобы произошло наполнение в нужной области цикла двигателя, из диска вырезается сектор. При вращении коленчатого вала и дискового клапана впускное окно открывается в момент, когда вырезанный сектор проходит мимо канала, позволяя смеси проникнуть непосредственно в кривошипную камеру. Затем канал перекрывается диском, предотвращая обратный выброс смеси в карбюратор по мере того, как поршень начинает двигаться вниз.

К очевидным преимуществам использования дискового клапана можно причислить более точное управление началом и концом процесса участок, или сектор, диска минует канал), и продолжительностью процесса наполнения (то есть величиной вырезанного участка диска, пропорциональной времени открытия канала). Также дисковый клапан допускает применение впускного канала большого диаметра и гарантирует беспрепятственный проход смеси, попадающей в кривошипную камеру. В отличие от лепесткового клапана с достаточно большим корпусом клапанов, дисковый клапан не создает никаких преград во впускном канале, и поэтому газообмен в двигателе улучшается. Другое преимущество дискового клапана проявляется на спортивных мотоциклах — это время, за которое его можно заменить для подбора рабочих характеристик двигателя под различные трассы. Главным недостатком дискового клапана являются технические трудности, требующие маленьких производственных допусков и отсутствие приспособляемости, то есть неспособность клапана реагировать на изменение потребностей двигателя подобно лепестковому клапану. Кроме того, все дисковые клапана уязвимы в отношении попадания мусора, поступающего в двигатель с воздухом (мелкие частицы и пыль оседают на уплотняющих канавках и царапают диск). Несмотря на это. на практике дисковые клапана работают очень хорошо и обычно способствуют значительному приросту мощности на низких частотах вращения двигателя по сравнению с обычным двигателем с поршнем в роли органа газораспределения.

Совместное использование лепестковых и дисковых клапанов

Неспособность дискового клапана реагировать на изменение потребностей двигателя навела некоторых производителей на мысль — использовать комбинацию дискового и лепесткового клапана для получения высокой эластичности двигателя. Поэтому.когда этого требуют условия, давление в картере двигателя закрывает лепестковый клапан, таким образом, закрывая впускной канал со стороны кривошипной камеры, даже несмотря на то, что вырезанный участок (сектор) диска все еще может открывать впускной канал со стороны карбюратора.

Использование щеки коленвала в качестве дискового клапана

Интересный вариант дискового клапана использовался в течение нескольких лет на ряде двигателей мотороллеров Vespa. Вместо применения отдельного клапанного устройства для выполнения его роли производители использовали стандартный коленчатый вал. Плоскость правой щеки маховика обработана с очень высокой точностью так, что при вращении коленвала зазор между ней и картером составляет несколько тысячных долей дюйма. Впускной канал находится прямо над маховиком (на этих двигателях цилиндр располагается горизонтально) и, таким образом,прикрывается краем маховика, Путем механической обработки выемки в части маховика можно в заданной точке цикла двигателя открыть канал аналогично тому, как это происходит при использовании традиционного дискового клапана. Хотя получаемый впускной канал оказывается менее прямым, чем мог бы быть, на практике эта система работает очень хорошо. В результате двигатель вырабатывает полезную мощность в широком диапазоне частот вращения двигателя, и по прежнему остается технически простым.

Расположение выпускного окна

во многих отношениях системы впуска и выпуска на двухтактном двигателе очень тесно связаны. В предшествующих параграфах мы обсудили способы подвода смеси и отвода отработавших газов из цилиндра. За эти годы проектировщики и испытатели обнаружили, что фазы выпуска могут иметь столь же существенное влияние на характеристики двигателя, как и фазы впуска. Фазы выпуска определяются высотой выпускного окна в стенке цилиндра, то есть когда оно закрывается и открывается поршнем по мере того, как он перемешается в цилиндре вверх и вниз. Конечно, как и во всех других случаях, нет одного единственного положения, которое охватывало бы все режимы двигателя. Во- первых, это зависит оттого, для чего двигатель должен использоваться, во-вторых, как этот двигатель используется. Например, для одного и того же двигателя оптимальная высота выпускного окна различна при низких и при высоких частотах вращения двигателя, а при углубленном рассмотрении можно сказать, что то же относится и к размерам канала, и непосредственно к размерам выпускной трубы. В результате на производстве разработаны различные системы с изменяющимися при работе двигателя характеристиками выпускных систем для соответствия изменяющимся частотам врашения. Такие системы появились у Yamaha (YPVS), Honda (АТАС). Kawasaki (KIPS), Suzuki (SAPC), Cagiva (CTS) и Aprilia (RAVE). Ниже описываются системы Yamaha, Kawasaki и Honda.

Системе с мощностным клепаном Yamaha — YPVS

В основе этой системы лежит непосредственно мощностной клапан, который по существу является роторным клапаном, установленным в гильзе цилиндра так, чтобы его нижняя кромка соответствовала верхней кромке выпускного окна. На низких частотах вращения двигателя клапан находится в закрытом положении, ограничивая эффективную высоту окна: это улучшает характеристики на низких и средних режимах Когда частота вращения двигателя достигает заданного уровня, клапан открывается, увеличивая эффективную высоту окна, что способствует улучшению характеристик на высоких скоростях. Положение мощностного клапана контролирует серводвигатель при помощи троса и шкива. Блок управления YPVSi-получает данные об угле открытия клапана от потенциометра на серводвигателе и данные о частоте вращения двигателя от блока управления зажиганием; эти данные используются для выработки правильного сигнала к механизму привода серводвигателя (см. рис. 1.86). Замечание: На внедорожных мотоциклах компании Yamaha используется несколько отличная версия системы из-за малой мощности аккумулятора: мощностной клапан приводится в действие от центробежного механизма, установленного на коленчатом валу.

Комплексная система мощностных клапанов Kawasaki — KIPS

Система Kawasaki имеет механический привод от установленного на коленчатом валу центробежного (шарикового) регулятора, Вертикальная тяга соединяет механизм привода с тягой управления мощностным клапаном, установленным в гильзе цилиндра. Два таких мощностных клапана расположены во вспомогательных каналах с обеих сторон от главного впускного окна и связаны с тягой привода посредством шестерни и зубчатой рейки. По мере того, как тяга привода перемещается «из стороны в сторону», клапана вращаются, открывая и закрывая вспомогательные каналы в цилиндре и камере резонатора, расположенной с левой стороны двигателя. Система рассчитана так, чтобы при низкой частоте вращения вспомогательные каналы были закрыты клапанами для обеспечения кратковременного открытия канала. Левый клапан открывает камеру резонатора покидающим отработавшим газам, таким образом увеличивая объем расширительной камеры. При высокой частоте вращения клапана поворачиваются, чтобы открыть оба вспомогательных канала и увеличить продолжительность открытия канала, следовательно, обеспечить большую пиковую мощность. Камера резонатора закрывается клапаном с левой стороны, снижая общий объем выпускной системы. Система KIPS обеспечивает улучшение характеристик на низких и средних частотах вращения за счет уменьшения высоты канала и большего объема выпускной системы а при высоких частотах вращения — за счет увеличения высоты выпускного окна и меньшего объема системы выпуска. В дальнейшем система была усовершенствована за счет введения промежуточной шестерни между тягой привода и одним из клапанов, обеспечивающей вращение клапанов во встречных направлениях, а также добавления плоского мощностного клапана на передней кромке выпускного окна. На моделях большего объема запуск и работа на низких частотах вращения была улучшены за счет добавления соплового профиля в верхней части клапанов.

Камера усиления крутящего момента с автоматическим управлением Honda — АТАС

Система, применяемая на моделях фирмы Honda, имеет привод от автоматического центробежного регуляторе, установленного на коленчатом валу. Механизм, состоящий из рейки и валика, передает усилие от регулятора к клапану АТАС, установленному в гильзе цилиндра. Камера HERP (Резонансная Энергетическая Труба Honda) открывается клапаном АТАС при низких частотах вращения двигателя и закрывается при высоких.

Система впрыска топлива

Судя по всему, очевидным методом решения всех проблем, связанных с наполнением камеры сгорания двухтактного двигателя топливом и воздухом, не говоря уже о проблемах высокого расхода горючего и вредных выбросов, является использование системы впрыска топлива. Однако, если топливо не подводится непосредственно в камеру сгорания, все еще остаются характерные проблемы с фазой наполнения и эффективностью двигателя. Проблема, связанная с непосредственным впрыском топлива в камеру сгорания, заключается в том. что топливо может быть подано только после того, как впускные окна будут закрыты, следовательно, остается мало времени для распыливания и полного перемешивания топлива с воздухом, находящимся в цилиндре (который поступает из кривошипной камеры, как в традиционных двухтактных двигателях). Это порождает другую проблему, так как давление внутри камеры сгорания после закрытия выпускного окна велико, и она быстро нарастает, следовательно, топливо должно подаваться при еще более высоком давлении, иначе оно просто не будет истекать из форсунки. Это требует довольно крупногабаритного топливного насоса, что влечет за собой проблемы связанные с увеличением веса, габаритов и стоимости. Aprilia решила эти проблемы, применив систему, называемую DITECH, основанную на конструкции австралийской компании, Peugeot и Kymmco разработали подобную систему. Форсунка в начале цикла двигателя подает струю топлива в отдельную закрытую вспомогательную камеру, содержащую сжатый воздух (подаваемый либо от отдельного компрессора, либо по каналу с обратным клапаном от цилиндра]. После того, как выпускное окно закрывается, вспомогательная камера сообщается с камерой сгорания через клапан или сопло, и смесь подается непосредственно к свече зажигания. Aprilia претендует на снижение вредных выбросов на 80 %, достигаемое за счет снижения не 60 % расхода масла и на 50 % расхода горючего, кроме того, скорость скутера с такой системой на 15 % выше скорости такого же скутера со стандартным карбюратором.

Главное преимущество применения непосредственного впрыска в том. что по сравнению с обыкновенным двухтактным двигателем исчезает необходимость предварительного перемешивания топлива с маслом для смазки двигателя. Смазка улучшается, поскольку масло не смывается топливом с подшипников и, следовательно, требуется меньшее количество масла, в результате чего снижается токсичность. Сгорание топлива также улучшается, а нагарообразование на поршнях, поршневых кольцах и в выпускной системе снижается. Воздух по-прежнему подается через кривошипную камеру (его расход определяется дроссельной заслонкой, связанной с ручкой газа мотоцикла) Это означает, что масло все еще сгорает в цилиндре, и смазка и смазка не столь эффективна, как хотелось бы. Однако результаты независимых испытаний говорят сами за себя. Все, что теперь необходимо-обеспечить подвод воздуха, минуя кривошипную камеру.

[kkstarratings]

Статью прочитали: 1 496

moto-manual.com

Принцип работы двухтактного двигателя

Двухтактный двигатель

В наши дни мало кого можно удивить таким устройством, как двигатель внутреннего сгорания. Однако, еще в 19 веке люди и подумать не могли, что оно будет существовать. Именно тогда в эпоху научно-технического прогресса и появилась необходимость в создании механизма, который будет приводить в движение различные части того или иного узла или агрегата.

Тактный двигатель появился именно тогда. Это было революционное достижение человеческой мысли. Его работа основывалась, да и основывается на основных физических законах. Причем, стоит отметить, что они достаточно тривиальны. Об этом стоит поговорить чуть позже. Двухтактный двигатель стал основой работы различной техники. Вся суть этого устройства говорит нам о том, что работа в нем осуществляется в 2 такта. Если сравнивать его с собратом, который представляет собой 4 тактный двигатель внутреннего сгорания, то он имеет почти в 2 раза больше мощности. Это связано с его принципом работы.

Немного о том, как он работает

Принцип работы двухтактного двигателя достаточно прост. Весь рабочий цикл в таких устройствах состоит всего из 2 тактов, а именно из сжатия и расширения. 4 тактный агрегат отличается от данной модели тем, что в нем впуск  выпуск смеси осуществляется в виде отдельного рабочего процесса. Здесь же, эти два действия совмещены со сжатием и расширением.
Сам принцип работы заключается в следующем:

Сжатие под поршнем
  1. Сначала происходит движение поршня, направленного от нижней, так называемой мертвой точки, в верхнюю. Этот процесс совмещен еще с одним, который заставляет через продувочное окно доставлять в камеру горючее с воздухом. Так же в это самое время приоткрывается выпускное окно. Через него выходят все отработанные газы. Именно так начинается процесс сжатия.
  2. Одновременно со стартом процесса сжатия начинает образовываться разреженное воздушное пространство в кривошипной камере. Это способствует тому, что сюда из карбюратора начинает поступать свежая порция горючего. Когда поршень достигает верхней мертвой точки, смесь начинает воспламеняться от свечей зажигания, соответственно, выполняется полезная работа, которая толкает его вниз.
  3. В это время в кривошипной камере начинает создаваться избыточное давление. Оно действует на горючее, которое начинает сжиматься. Когда верхняя точка поршня достигает выпускного окна, то оно открывается, и выпускает все отработанные газы. Отсюда они попадают напрямую в глушитель. Двигаясь дальше, поршень постепенно открывает продувочное окно. То горючее, которое находилось до этого времени в кривошипной камере, постепенно подается внутрь цилиндра. Когда рабочий орган опускается до нижней мертвой точки, то можно говорить о том, что работа 2 такта завершена, а это означает, что все начинается с самого начала. По сути, двухтактный двигатель по принципу работы сильно отличается от того, что нам предлагает 4 тактный.

Особенности

Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Мотоцикл с двухтактным двигателем

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

Газообмен в двухтактном двигателе

Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе.

Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Отличие двухтактной модели от четырехтактной

В предыдущей главе была частично затронута эта тема, однако стоит изучить ее более подробно, так как проблема выбора стоит перед многими людьми.

Принцип работы

Основное различие между 4 тактным и двухтактным двигателями заключается в принципе построения их механизмов удаления и подачи топлива в цилиндр. 4 тактный агрегат использует в своей основе специальный механизм, который открывает и закрывает выпускной и впускной клапана в определенный момент времени. Когда мы говорим о модели с 2 рабочими тактами, то тут очистка и заполнение цилиндра смесями происходит одновременно с процессами сжатия и разрежения. Для этого на стенках цилиндра делаются два рабочих отверстия. Одно из них продувочное, а второе — впускное.

Литровая мощность

4 тактный агрегат совершает в ходе своей работы два хода поршня. Казалось бы, мощность двухтактного двигателя должна быть в два раза больше, так как рабочий процесс происходит за одно перемещение поршня. На практике этого достичь не удается. Все связано с потерями энергии и низким КПД. В процессе работы модели с 2 тактами может происходить смешивание отработанных газов и чистой газовоздушной смеси. Это напрямую влияет на выходную мощность оборудования. К тому же, рабочий ход поршня в данном случае значительно меньше, чем у 4 тактной модели.

Потребление горючего

4 тактный двигатель имеет мощность ниже двухтактной модели, поэтому потребляет меньше горючего. Хотя, казалось бы, этот параметр должен быть приблизительно одинаковым. На практике такого не получается. Агрегат, который работает в 2 такта, ввиду особенностей своего принципа работы, создает дополнительные потери. Они связаны с тем, что отработанные газы частично смешиваются со свежим топливом, поэтому удаляются вместе с его частью через выхлопную трубу. Отсюда вывод: на одинаковое количество рабочих циклов для 4 тактной модели понадобится меньше горючего.

Смазка

Смазка в обеих моделях так же осуществляется по-разному. В нашем случае она осуществляется путем пропорционального смешивания бензина и масла. 4 тактный двигатель подразумевает использование специального расширительного бачка. он связан системой патрубков с плунжерным насосом. отсюда смазка опадает во впускной патрубок. Причем, ее количество поставляется ровно в том объеме, который необходим.

На основе всего вышесказанного можно выделить следующие преимущества, которыми обладает двухтактный двигатель:

  • Большая мощность при том же рабочем объеме;
  • Простое устройство;
  • Малый вес агрегата.

Все это заставляет конструкторов и разработчиков современной техники использовать данную модель в своих новых проектах. Как знать, может быть со временем система разряжения и сжатия претерпит изменения, выведя КПД оборудования на новый уровень.

autodont.ru

Рабочий цикл двухтактного двигателя | Двигатель автомобиля

Во всех двухтактных двигателях для удаления отработавших газов из цилиндра используется поток свежей смеси или воздуха. Этот процесс называется продувкой и может осуществляться различными способами.

Схема устройства и работы двухтактного карбюраторного двигателя с кривошипно-камерной продувкой изображена на рисунке. У двигателей этого типа в стенке цилиндра 4 сделаны три окна: впускное 7, продувочное 2 и выпускное 6. Картер (кривошипная камера 9) двигателя непосредственного сообщения с атмосферой не имеет. К впускному окну 7 присоединен карбюратор 8. Продувочное окно 2 сообщается каналом 1 с кривошипной камерой 9 двигателя.

Рабочий цикл двухтактного карбюраторного двигателя происходит следующим образом. Поршень 3 движется от н.м.т. к в.м.т. (рисунок а), перекрывая в начале хода продувочное окно 2, а затем выпускное 6. После этого в цилиндре начинается сжатие ранее поступившей в него горючей смеси. В то же время в кривошипной камере 9 создается разрежение, и как только нижняя кромка юбки поршня откроет впускное окно 7, через него из карбюратора 8 в кривошипную камеру будет засасываться горючая смесь.

При положении поршня, близком к в. м.т., сжатая рабочая смесь воспламеняется электрической искрой от свечи 5. При сгорании смеси давление газов резко возрастает. Под давлением газов поршень перемещается к н. м. т. (рисунок б). Как только он закроет впускное окно 7, в кривошипной камере 9 начнется сжатие ранее поступившей сюда горючей смеси.

В конце хода поршень открывает выпускное окно 6 (рисунок в), а затем и продувочное окно 2. Через открытое выпускное окно отработавшие газы с большой скоростью выходят в атмосферу. Давление в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу 1 поступает в цилиндр и, заполняя его, выталкивает остатки отработавших газов через выпускное окно наружу.

Рисунок. Схема устройства и работы двухтактного карбюраторного двигателя:
1 — канал, идущий из кривошипной камеры; 2 — продувочное окно; 3 — поршень; 4 — цилиндр; 5 — искровая зажигательная свеча; 6 — выпускное окно; 7 — впускное окно; 8- карбюратор; 9 — кривошипная камера

В дальнейшем все процессы повторяются в такой же последовательности.

В конструктивном и эксплуатационном отношении двухтактные двигатели проще четырехтактных, так как не имеют специального механизма газораспределения. Однако по экономичности двухтактные двигатели уступают четырехтактным из-за менее совершенной очистки цилиндров от продуктов сгорания и потери мощности, расходуемой на привод продувочного насоса. Поэтому большинство карбюраторных двигателей выполняют четырехтактными, а двухтактные используют на тракторах в качестве пусковых двигателей.

ustroistvo-avtomobilya.ru

Устройство и принцип работы четырёхтактного двигателя и двухтактного двигателя с

Преимущества четырёхтактных двигателей
  • Б́ольшая экономичность
  • Более чистый выхлоп (экологически чище)
  • Не требуется сложная выхлопная система
  • Меньший шум, вибрация
  • Отсутствие необходимости постоянного контроля уровня масла

 

Преимущества двухтактных двигателей
  • Отсутствие громоздких систем смазки и газораспределения
  • Б́ольшая мощность в пересчёте на 1 литр рабочего объёма
  • Проще и дешевле в изготовлении
  • Меньший вес

Устройство и принцип работы четырёхтактного двигателя и двухтактного двигателя


 

 

Рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.
Поршень - металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Пoршень снабжен металлическим стержнем - пальцем, соединение с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

1. Впуск - четырёхтактный двигатель

В процессе впуска поршень четырёхтактного двигателя идёт из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). Одновременно кулачком распредвала открывается впускной клапан, - в цилиндр четырёхтактного двигателя затягивается свежая топливно-воздушная смесь.

2. Сжатие - четырёхтактный двигатель

Пoршень четырёхтактного двигателя поднимается из НМТ в ВМТ, сжимая рабочую топливную смесь. Одновременно и значительно поднимается температура горючей смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия (не путать с компрессией). Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Но, для четырёхтактного двигателя с б́ольшей степенью сжатия требуется топливо с б́ольшим октановым числом, которое дороже.

3. Сгорание и расширение (рабочий ход поршня) - четырёхтактный двигатель

Незадолго до окончания такта сжатия горючая смесь воспламеняется искрой от свечи зажигания. Во время следования поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси именуется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы давление газов достигло максимальной величины когда пoршень будет находиться в ВМТ. Тогда использование энергии сгоревшего топлива будет максимальным. Скороть горения топлива практически не меняется, то есть занимает фиксированное время, следовательно чтобы достичь максимальной производительности двигателя нужно увеличивать угол опережения зажигания пропорционально уровню оборотов коленвала. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором воздействующим на прерыватель). В более современных двигателях для регулировки угла используется электронное опережение зажигания.

4. Выпуск - четырёхтактный двигатель

После НМТ такта рабочего хода поршня четырёхтактного двигателя открывается выпускной клапан, и поднимающийся поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и четырёхтактный цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндра/-ов горючей смесью, а также для лучшей очистки цилиндра/-ов четырёхтактного двигателя от отработанных газов.

 

Четырехтактный двигатель скутера:

1 - цилиндр с головкой
2 - крышка головки цилиндра
3 - карбюратор
4 - впускной патрубок
5 - электростартер.

Для ещё большей наглядности посмотри видеоролик, наглядно показывающий работу четырёхтактного двигателя. На этом видео демонстрируется автомобильный четырёхцилиндровый шестнадцатиклапанный (то есть, в каждом цилиндре по два впускных и выпускных клапана, для лучшей продувки) двигатель, однако сути это не меняет.


 

 

 


 

 

В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала (а не двух, как в четырёхтактных) за два (а не четыре) основных такта. У двухтактных двигателей отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет сам пoршень, который в процессе перемещения то закрывает, то открывает впускные, выпускные и продувочные окна. Поэтому двухтактный двигатель более прост в конструкции.

Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего в 2 раза числа рабочих тактов. Однако неполное использование хода поршня двухтактного двигателя для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60 - 70%.

 

Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:

Двухтактный двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндр.

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит за счёт топливной смеси, - смеси бензина и масла в определённой пропорции. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двухтактного двигателя (полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась бы топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно быть способно выдерживать высокие температуры и, сгорая вместе с топливом, оставлять минимум зольных отложений, то есть нагара.

Теперь о принципе работы. Весь рабочий цикл в двухтактных двигателях осуществляется за два такта.

 

1. Такт сжатия - двухтактный двигатель

Пoршень двухтактного двигателя поднимается от НМТ поршня (в таком положении он находится на рис. 2) к ВМТ поршня (положение поршня на рис.3), перекрывая сначала продувочное 2, а затем выпускное 3 окна цилиндра двухтактного двигателя. После закрытия поршнем выпускного отверстия в цилиндре начинается сжатие ранее поступившего в него топливной смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как пoршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру двухтактного двигателя.

 

2. Такт рабочего хода - двухтактный двигатель

При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, после этого температура и давление смеси резко подскакивают. Под действием теплового расширения газов поршень двухтактного двигателя опускается к НМТ, в это время расширяющиеся газы сгоревшей смеси совершают полезную работу, толкая поршень. В это же время, опускаясь, пoршень создает высокое давление в кривошипной камере двухтактного двигателя (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень двухтактного двигателя дойдет до выпускного отверстия (1 на рис. 4), оно откроется и таким образом выйдут отработавшие газы в выпускную систему, давление в цилиндре понизится. При дальнейшем перемещении пoршень открывает продувочное (впускное) окно (1 на рис. 5) и горючая смесь, сжатая в кривошипной камере, поступает по каналу (2 на рис. 5), заполняя цилиндр и одновременно продувая его от остатков отработавших газов.

Далее цикл повторяется.

Немного о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем пoршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому что пoршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя.

У большинства скутеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением, то есть с опережением, зависящим от оборотов коленвала. С ним расширяющаяся горючая смесь совершает работу с максимальной полезной отдачей, и двигатель развивает больше мощности.

 

 

 

 

 

 

 

Преимущества и недостатки двух- и четырехтактных двигателей.

Двухтактные преимущества

1. Меньший вес. Пример: 15 л.с. Двухтактный 36 кг четырёхтактный 45 кг.

2. Цена. Четырёхтактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже двухтактников.

3. Удобство перевозки двухтактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

4. Двухтактный двигатель живее реагирует на ручку газа. В четырёхтактных для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в двухтактных только один. Частый вопрос: А правда ли что четырёхтактный 15 л.с. бежит быстрее чем такой же двухтактный? Ответ: нет не правда. У обоих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один двигатель должен ехать быстрее второго?

Двухтактные недостатки

1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для двухтактного 300 грамм на одну лошадинную силу, для четырёхтактного 200 грамм.

2. Шумность. На максимальных оборотах двухтактные двигатели как правило работают немного громче четырёхтактных.

3. Комфорт. Четырёхтактные двигатели не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и двух и четырёхтактные вибрируют примерно одинаково) и не так дымят как двухтактные.

4. Долговечность. Довольно спорный пункт. Бытует мнение, что двухтактные двигатели менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от четырёхтактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны четырёхтактный двигатель по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики "Чем проще тем надежнее" еще никто не отменял.

Какой же двигатель выбрать?

Взвесь все за и против изложенные выше и сделай выбор самостоятельно. Однозначного ответа на вопрос: какой из двигателей лучше ты не найдешь ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники.

 

Просмотров: 3019

motochasti.ru

Принцип работы двухтактного двигателя внутреннего сгорания

На данный момент существует два основных вида двигателей внутреннего сгорания — двухтактные и четырехтактные. По своему внешнему виду они практически не отличаются, однако двухтактные двигатели работают по совсем другому принципу. Попробуем разобраться в чем основные различия этих двух типов ДВС, и как работает двухтактный двигатель.

Принцип работы двигателя внутреннего сгорания

Для того, чтобы ваша машина могла выполнять свою прямую функцию — возить вас, ее нужно заправлять топливом: бензином, дизелем, пропан-бутаном. По топливопроводу бензин поступает в двигатель, основную работу в нем выполняют поршни и кривошипно-шатунный механизм. Бензин смешивается с воздухом, образуется смесь, которая взрывается и приводит поршни в движение, этот момент движения передается на коленчатый вал, а от него на трансмиссию.

Разница между 2-х и 4-х тактными двигателями, как видно из названия, состоит в количестве тактов, то есть в рабочем цикле двигателя. Рабочий цикл любого ДВС — это последовательность таких процессов:

  • заполнение цилиндра горючей смесью;
  • ее воспламенение;
  • расширение газов;
  • вытеснение продуктов сгорания.

В 4-тактном двигателе вся эта последовательность осуществляется за 4 такта, то есть за два оборота коленвала, в двухтактном — за один оборот. Из этого можно сделать вывод, что 2-тактные двигатели обладают большей мощностью, и это действительно так, не зря ведь их используют не только для мотоциклов, мопедов, различных квадроциклов, снегоходов и гидроциклов, но и для приведения в движение огромных морских кораблей.

Теоретически мощность должна быть выше в два раза. Например, небольшой по размерам двигатель мотоцикла может легко выдавать мощность в сто и больше лошадей, тогда как гораздо более массивный и объемный мотор какого-нибудь автомобиля класса «В» или «С» выдает 70-100 л.с.

Устройство двухтактного двигателя

Основное преимущество двухтактных двигателей состоит в простоте их конструкции. Поскольку все процессы рабочего цикла завершаются за один оборот кривошипа, отпадает необходимость в наличии сложного газораспределительного механизма, который контролирует движение впускных и выпускных клапанов. Впускной клапан закрывается и открывается из-за разницы давления, а отработанные газы выходят через выпускное окно к глушителю.

Также 2-тактный двигатель охлаждается с помощью топлива, в которое подмешан определенный процент масла. Масло нужно подбирать именно двухтактное, поскольку оно приспособлено к высоким температурам и при сгорании оставляет меньшее количество шлака и золы.

Поршень движется от нижней мертвой точки к верхней — НМТ и ВМТ. Во время движения вверх поршень сжимает поступившую воздушно-топливную смесь. В ВМТ происходит взрыв смеси и поршень начинает движение вниз, в этот момент поступает новая порция смеси. Получается, что поршень сам же и выталкивает отработанные газы, а это и является основным недостатком двухтактных двигателей, влияющим на их КПД.

Недостатки двухтактных двигателей

Несмотря на то, что инженеры пытаются их решить, недостатки все же есть и они существенные.

Самый главный из них — неэффективное использование топлива и повышенные выбросы СО2.

Если в четырехтактных двигателях на отвод отработанных газов и продуктов сгорания отводится отдельный такт, то здесь этот такт совмещается с заполнением цилиндра новой порцией горючей смеси, и как бы не старались инженеры, избежать смешивания ее с отработанными газами не удается.

Кроме того необходимо постоянно добавлять в бензин масло, причем оно довольно дорогостоящее и расходуется быстрее.

Из-за этих проблем снижается и мощность двигателя. Теоретически она должна быть в два раза выше, чем у 4-тактных ДВС, но на деле этот показатель не превышает 50-70 процентов. После 2000 года многие производители отказались от двухтактных ДВС. Однако работы по их совершенствованию постоянно ведутся.

Видео принципа работы данного типа двигателей.

Загрузка...

Поделиться в социальных сетях

vodi.su

Устройство двухтактного двигателя внутреннего сгорания

Сегодня двухтактные двигатели перестают устанавливать на мопеды и скутеры, они почти не используются на мотоциклах кроме некоторых моделей мопедов. По какой же причине еще пару лет назад двухтактные двигатели были основным типом моторов скутеров?

Основой причиной этого можно назвать стремление развитых стран к сокращению выброса выхлопных газов в атмосферу. В тех же странах, в основном, это европейские государства, стремятся и к экономии топлива, а более экономичные это четырех тактные двигатели. Ну, и стремление к новаторству тоже способствует внедрению новых двигателей.

Мощность пятидесятикубового четрырехтактного двигателя ничтожна, в сравнении с двухтактным. Разгоняется очень вяло, скутер плохо реагирует на сигнал газа, с некоторым опозданием. Этим объясняется привычка китайцев скрывать увеличенную кубатуру четырехтактых скутеров и выдавать их за двухтактные двигатели. Все просто — таким образом, они компенсируют нехватку мощности без лишних затрат. Японцы пошли по другому пути, объем цилиндра они указывают правильно, а ситуацию с мощностью они решают, применяя дорогостоящие технологии, то есть, японские четирехтактные скутеры, объемом 50 кубов, имеют нормальную скорость и динамику.

Ясно, что для данного случая, двухтактный двигатель более рационален и экономичен. Большинство скутеров, используемых у нас, это японские модели прошлых лет, в основном, они двухтактные. Как пример, можно назвать такие скутеры, как Suzuki Sepia, Honda Dio, Yamaha Jog, Suzuki Address, Honda Lead.

Каждый владелец подобных скутеров должен знать, что из себя представляет их двигатель. Рассмотрим принцип работы стандартного двухтактного двигателя и его строение. Для разных моделей, принцип работы не сильно отличается, поэтому рассматривать каждую модель нет смысла.

Описание и конструкция двухтактного двигателя

1 — бак для масла; 2 — карбюратор; 3 — разделитель тросика «газа»; 4 — ручка «газ»; 5 — тросик регулятора подачи масла; 6 — насос-дозатор; 7 — впускной масляный патрубок.

Схема, приведенная выше, используется в хондах. Ручка газа одновременно управляет и маслонасосом. Бензин подается при помощи бензонасоса, так как, в отличие от ямах и сузуки, бензобак расположен под ногами водителя. Поршень размещен внутри цилиндра, а свеча находится в головке цилиндра. Сгорая, смесь толкает поршень вниз, а он шатуном вращает коленвал. Эти аппараты просты в обслуживании и ремонте.

Принцип работы двухтактного двигателя

Последовательность работы:
, а — сжатие в цилиндре, впуск в кривошипную камеру;
б — воспламенение и сгорание в цилиндре;
в — выброс выхлопных газов и продувание горючей смесью;
1 — канал продувки;
2 — выпускной канал;
3 — свечка;
4 — клапан впускного канала;
5 — канал впуска;
6 — кривошипная камера Принцип работы состоит из такта сжатия и такта рабочего хода. При такте сжатия, смесь сжимается, создается давление в камере сгорания, потом происходит сгорание, и начинается такт рабочего хода, являющийся основой движущей силой.

Теперь взглянем на эти процессы детальнее. На рис. 1 показана работа двухтактного двигателя. Желтым цветом показано топливо — бензин с маслом.

Показаны:

  • цилиндр, поршень (работает в цилиндре)
  • свеча (поджигает топливо)
  • выпускной коллектор (соединяет цилиндр с выхлопной трубой для отвода отработанных газов)
  • впускной коллектор (соединяет цилиндр и карбюратор)
  • клапана в головке цилиндра не дают газам и рабочей смеси попадать в карбюратор

В двигателях этого типа, смазка рабочих частей — поршня и целиндра, осуществляется топливной смесью, т. е. бензином смешанным с маслом.

В скутерах установлен отдельный бачок для масла, а его количество регулируется маслонасосом. Топливная смесь, перед сгоранием смазывает камеру сгорания, а отдельного масла, как в четырех тактном двигателе, не предусмотрено. Масло сжигается вместе с бензином, поэтому должно иметь следующие параметры: хорошо смазывать все детали, хорошо гореть, не оставлять нагара после сгорания. Последнее требование наиболее важно, плохое масло приводит к образованию нагара в цилиндре и снижает его мощность.

На рис. 2 поршень расположен в «нижней мертвой точке сокращенно НМТ».

В этом положении нет давления в камере сгорания, а клапан открытый. Затем, поршень двигается вверх и закрывает впускной клапан, а потом и выпускной.

При достижении поршнем «верхней мертвой точки ВМТ» (см. рис. 2), в цилиндре сжимается горючая смесь.

В этот момент свеча поджигает сжатое топливо, взрыв которого толкает поршень вниз. При закрытии поршнем впускного коллектора, в кривошипной камере образуется разряжение, под его воздействием открывается клапан, и в камеру сгорания поступает новая порция топлива.

После этого, поршень, при движении вниз, освобождает выпускное окно, в которое выходят выхлопные газы. В этот момент клапан под действием давления, которое образует поршень, закрывается, и когда цилиндр достигает впускного окна, в камеру сгорания поступает горючая смесь. При этом двигатель постоянно смазывается маслобензиновой смесью.

Плюсы и минусы двухтактного двигателя

Теперь перейдем к плюсам и минусам двухтактных двигателей в сравнении с четырехтактными.

Плюсы двухтактного двигателя:

  • двухтактник прост в ремонте
  • простота в изготовлении
  • невысокая стоимость
  • небольшие габариты и масса
  • мало рабочих деталей
  • высокая мощность

Минусы двухтактного двигателя:

  • большой расход;
  • любит высокие обороты;
  • больше выброс вредных газов;
  • менее долговечный

Есть как преимущества, так и недостатки, но факт есть факт, и, внедряя четырехтактные двигатели в 50-ти кубовые скутеры, производители делают свою продукцию дороже, и лишают покупателей динамических возможностей, которые предоставляют мощные двухтактные двигатели.

Все сказанное актуально только для двигателей с маленькой камерой сгорания, до пятидесяти кубических сантиметров, для моделей свыше ста кубических сантиметров, установка четырехтактного двигателя более рациональна. Это стало ясно в 80-х годах, и почти всю кубатуру начали комплектовать четырехтактниками. Но для полтинников это увеличивает только долговечность, а насладиться динамикой и скоростью можно будет только в моделях класса спорт, в которых установлены двухтактные двигатели.

Видео: Схема работы двухтактного двигателя

Похожие материалы

16.12.2013

impofe.ru

Что может двухтактный двигатель — DRIVE2

Мой хороший знакомый, очень уважаемый мною моторист и бывший мотогонщик когда то сказал фразу о двухтактном моторе, которая мне очень запомнилась: "Жизнь двухтактного мотора как у бабочки, очень яркая, но недолгая".
Эта фраза мне вспомнилась после того как, я наткнулся на статью о гоночном двухтактном двигателе Honda-NSR500.

Ведь действительно автомобилисты редко сталкиваются с двухтактными двигателями и поэтому мало о них знают. А ведь двухтактники обладают двумя огромными преимуществами — огромная литровая мощность и очень малый вес. Эти характиристики идеально подходят для гоночных мотоциклов.
Технические характеристики HONDA NSR500.
Год выпуска: 1992
Мощность двигателя: до 200 лс при 14000 оборотов в минуту на 2000 год.
Крутящий момент: 106 н/м при 11450 оборотов в минуту
Рабочий объем: 498 куб. см.
Двухтактный, 60-градусный, 4 цилиндровый, V образный
Ширина двигателя 300 мм
Масса двигателя 45 кг
Масса мотоцикла без топлива 135 кг
Запас топлива 32 литра
Максимальная скорость более 320 км/час
Разгон до 100 около 2 сек. Сильно зависит от массы пилота и топлива.

HONDA NSR500 был самым успешным из полулитровых двухтактных Гран при мотоциклов, и зачастую наиболее опасным из всех. Это было связано главным образом из-за его двигателя V4, который был вообще самый мощным на гоночной сетке. Норов и мощность его была настолько жесткой, что лучшие гонщики мира в том числе и Валентино Росси, не всегда могли его полностью контролировать.
NSR дебютировал в 1984 году и с тех пор на этом мотоцикле за 18 лет, было выиграно 10 Гран-При в классе 500 и 130 отдельных гонок. Такой успех прежде всего связан с устройством двигателя и малым весом самого болида. Двухтактный двигатель HONDA NSR500 с одним коленвалом, без дополнительных балансиров, получился очень легким и обладал малым гироскопическим эффектом, что позволяло улучшить маневренность мотоцикла в поворотах. Огромная мощность позволяла быстро разгоняться.
Мощность двигателя постоянно росла и в 1989 году она составляла уже 190 лс а в 2000г 200 лс. Около 18 лет мотоциклы HONDA, оснащенные этим безумным двигателем состязались и выигрывали на гоночных трассах по всему миру. По сей день двигатель NSR500 является одним из самых безумных двигателей из когда либо созданных.

Получается литровая мощность 200 лс на 0,5 литра то есть 400 сил на 1 литр объема и при этом вес мотоцикла 135 кг.
Энерговооруженность не слабая 1,48 лс на 1 кг веса !

Но за все надо платить. В данном случае охренительный расход топлива (это вообще особенность двухтактных моторов обусловленная гениально простой системой газораспределения), а у гоночных моторов так тем более, и очень малый моторесурс.
Получается фраза бывалого мотогонщика очень точно отображает жизнь двухтактного двигателя — как у бабочки, очень яркая, но недолгая.

www.drive2.ru

Двухтактный двигатель — Энциклопедия журнала "За рулем"

Схема двухтактного ДВС:

Двухтактный ДВС обычно не имеет клапанов (за исключением двухтактных дизелей), а вместо них в определенных местах цилиндра выполнены отверстия, которые называются продувочными окнами

Через одно окно поступает топливно-воздушная смесь (или воздух в дизелях), а через другое удаляются отработавшие газы. В головке цилиндра устанавливается свеча зажигания (или форсунка в дизеле). Поршень в таких двигателях, как правило, имеет специальную форму. Во время первого такта происходят впуск и сжатие. Когда поршень находится в НМТ, оба продувочных окна открыты. Через одно из них под давлением от отдельного продувочного насоса или с использованием подпоршневой полости (картера) поступает свежая горючая смесь (или чистый воздух в дизелях) и, заполняя цилиндр, одновременно вытесняет остатки отработавших газов. Движущийся к ВМТ поршень перекрывает продувочные окна, и начинается процесс сжатия. Вблизи от ВМТ подается искра от свечи зажигания (или впрыскивается топливо в дизеле), после чего начинается второй такт — рабочий ход, который переходит в выпуск, после того, как открывается выпускное окно.
При одинаковой мощности двухтактный двигатель получается проще и компактнее, чем четырехтактный. Кроме того, в двухтактных двигателях рабочий ход происходит в два раза чаще. Это привело к широкому применению двухтактных двигателей на небольших транспортных средствах и агрегатах, таких, как мотоциклы, моторные лодки, газонокосилки и т. п. В 60-е гг. двухтактные двигатели устанавливались на автомобилях SААВ, а также на автомобилях, производившихся в ГДР (Wartburg и Trabant).

Двухтактный трехцилиндровый двигатель, разработанный компаниями Ford и Orbital:

К сожалению, в классических двухтактных двигателях часть топливно-воздушной смеси неизбежно теряется вместе с отработавшими газами, что обусловливает худшую топливную экономичность, по сравнению с четырехтактными двигателями, и плохие экологические показатели. Вот почему все серийно выпускаемые в настоящее время автомобили комплектуются четырехтактными двигателями. Необходимо отметить, что в последнее время появились двухтактные двигатели, в которых используется процесс впрыскивания топливно-воздушной смеси, разработанный фирмой Orbital, что позволило значительно улучшить показатели таких двигателей. Многие исследователи отмечают также меньшую долговечность двухтактных двигателей, вызванную тем, что поршневые кольца постоянно пересекают кромки продувочных окон, и поэтому изнашиваются быстрее.

wiki.zr.ru

Схемы устройства и принцип действия

Двигателем внутреннего сгорания называется тепловой двига­тель поршневого типа, в котором химическая энергия топлива пре­образуется в тепловую непосредственно внутри рабочего ци­линдра. В результате химической реакции топлива с кислородом воздуха образуются газообразные продукты сгорания с высокими давлением и температурой, которые являются рабочим телом дви­гателя. Продукты сгорания оказывают давление на поршень и вы­зывают его перемещение. Возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма превра­щается во вращательное движение коленчатого вала.

Двигатели внутреннего сгорания работают по одному из трех циклов: изохорному (цикл Отто), изобарному (цикл Дизеля) и смешанному (цикл Тринклера), различающихся характером про­текания процесса сообщения тепла рабочему телу. В смешанном цикле часть тепла сообщается при постоянном объеме, а осталь­ная часть при постоянном давлении. Отвод тепла во всех циклах совершается по изохоре.

Совокупность последовательных и периодически повторяю­щихся процессов, необходимых для движения поршня — наполне­ние цилиндра, сжатие, сгорание с последующим расширением газов и очистка цилиндра от продуктов сгорания — называется рабочим циклом двигателя. Часть цикла, проходящая за один ход поршня, называется тактом.

Двигатели внутреннего сгорания делятся на четырехтактные и двухтактные; в четырехтактных двигателях рабочий цикл совер­шается за четыре хода поршня, а в двухтактных — за два.

Судовые двигатели внутреннего сгорания в основном работают по смешанному циклу. Крайние предельные положения поршня в цилиндре называются соответственно верхней и нижней мерт­выми точками (в. м. т., н. м. т.). Расстояние по оси цилиндра, проходимое поршнем от одного до другого крайнего положения, называется ходом поршня S (рис. 125). Объем, описываемый поршнем при его движении между в. м. т. и н. м. т., называется рабочим объемом цилиндра Vs. Объем цилиндра над поршнем, когда последний находится в н. м. т., называется объемом камеры сжатия Vс. Объем цилиндра при положении поршня в н. м. т. на­зывается полным объемом цилиндра Vа : Va= Vс + Vs.

Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия ? = Va / Vc.

Величина степени сжатия зависит от типа двигателя. Для су­довых дизелей степень сжатия равна 12—18. Главными конструк­тивными характеристиками двига­теля являются диаметр цилиндра, ход поршня, число цилиндров и га­баритные размеры.

Четырехтактный двигатель.

На рис. 125 показана схема устройства четырехтактного дизеля. Фунда­ментная рама 15 дизеля покоится на судовом фундаменте 1. Блок ци­линдров 11 закрепляется на станине двигателя 14. Поршень 9 под дей­ствием газов совершает возвратно-поступательное движение по зерка­лу цилиндровой втулки 10 и с по­мощью шатуна 13 вращает коленча­тый вал 2. Верхняя головка шатуна с помощью поршневого пальца 3 соединена с поршнем, а нижняя ох­ватывает мотылевую шейку колен­чатого вала. В крышке 7 цилиндра размещены впускной клапан 4, вы­пускной клапан 8 и топливная фор­сунка 6. Впускной и выпускной клапаны приводятся в действие через систему штанг и рычагов 5 от кулачных шайб распредели­тельных валов 12. Последние получают вращение от коленчатого вала.

Рабочий цикл в четырехтактном двигателе происходит за два оборота коленчатого вала — за четыре хода (такта) поршня. Из четырех ходов (тактов) три хода (такта) являются подготови­тельными, а один рабочим. Каждый такт носит название основ­ного процесса, происходящего во время данного такта.

Первый такт — впуск. При движении поршня вниз (рис. 126) над поршнем в цилиндре создается разрежение, и через принуди­тельно открытый впускной клапан а атмосферный воздух запол­няет цилиндр. Для лучшего заполнения цилиндра свежим заря­дом воздуха впускной клапан а открывается несколько раньше, чем поршень достигнет в. м. т.—точка 1; имеет место предваре­ние впуска (15—30° по углу поворота коленчатого вала). Закан­чивается впуск воздуха в цилиндр в точке 2. Впускной клапан а закрывается с углом запаздывания 10—30° после н. м. т. возможность использовать инерцию входящего с большой ско­ростью воздуха, что приводит к более полной зарядке цилиндра. Продолжительность впуска соответствует углу поворота коленча­того вала на 220—250° и на рисунке показана заштрихованным углом 1—2, а па диаграмме р—? — линией впуска 1—2.

Второй такт — сжатие. С момента закрытия впускного кла­пана а (точка 2) при движении поршня вверх начинается сжатие. Объем уменьшается, температура и давление воздуха увеличи­ваются. Продолжительность сжатия составляет угол 140—160° по­ворота коленчатого вала и заканчивается в точке 3. Давление в конце сжатия достигает 3—4,5 Мн/м2, а температура 800—1100° К. Высокая температура заряда воздуха обеспечивает самовоспламенение топлива. В конце хода сжатия, когда поршень .немного не дошел до в. м. т. (точка 3), производится впрыск топ­лива через форсунку б. Опережение подачи топлива (угол пред­варения 10—30°) дает возможность к приходу поршня в в. м. т. подготовить рабочую смесь к самовоспламенению.

Третий такт — рабочий ход. Происходит горение топлива и рас­ширение продуктов сгорания. Продолжительность сгорания топ­лива составляет 40—60° поворота коленчатого вала (процесс 3—4 на рисунке). В конце горения внутренняя энергия газов увеличи­вается, давление газов достигает значительной величины 58 Мн/м2, а температура 1500—2000° К. Точка 4 — начало рас­ширения газов. Под давлением газов поршень движется вниз, со­вершая полезную механическую работу. В конце расширения (угол опережения 20—40° до н. м. т.) — точка 5 — открывается выпускной клапан в, давление в цилиндре резко падает и по дости­жении поршнем н. м. т. оказывается равным 0,1—0,11 Мн/м2, а температура 600—800° К. Предварение выпуска обеспечивает минимальное сопротивление движению поршня вверх в последую­щем такте. Рабочий ход совершается за 160—180° угла поворота коленчатого вала.

Четвертый такт — выпуск. Продолжается от точки 5 до точки 6. При выпуске поршень, двигаясь вверх от н. м. т., выталкивает от­работавшие продукты сгорания. Выпускной клапан закрывается с некоторым запозданием (на 10—30° угла поворота коленчатого вала после в. м. т.). Это улучшает удаление отработавших про­дуктов горения за счет отсасывающего действия газов, тем более что в это время впускной клапан уже открыт. Такое положение клапанов называется «перекрытием клапанов». Перекрытие кла­панов обеспечивает более совершенное удаление продуктов сгора­ния. Выпуск осуществляется в течение 225—250° угла поворота коленчатого вала.

Двухтактный двигатель.

На рис. 127 показана схема работы двухтактного дизеля. Газораспределение в двухтактных двигате­лях осуществляется через продувочные окна П и выпускные окна В. Продувочные окна соединены с продувочным ресиве­ром Р, в который продувочным насосом Н нагнетается чистый воз­дух под давлением 0,12—0,16 Мн/м2. Выпускные окна, несколько выше расположенные, чем продувочные, соединяются с выпускным коллектором. Топливо подается в цилиндр форсункой Ф. Рабочий цикл двухтактного двигателя осуществляется за два хода поршня, за один оборот коленчатого вала. Открытие и закрытие выпускных и продувочных окон производится поршнем.

Рассмотрим последовательность процессов в цилиндре.

Первый такт — горение, расширение, выпуск и продувка. Пор­шень движется вниз от в. м. т. к н. м. т. В начале такта происхо­дит бурное горение с повышением давления газов до 5—10 Мн/м2 и температуры до 1700—1900° К для тихоходных двигателей и 1800—2000° К для быстроходных. Горение заканчивается в точке 4 и затем происходит расширение продуктов сгорания (участок 4—5) до давления 0,25—0,6 Мн/м2 и температуры 900—1200° К. При положении мотыля в точке 5 (за 50—70° до н. м. т.) откры­ваются выпускные окна, давление в цилиндре резко падает и на­чинается выпуск отработавших газов выпускного коллектора в ат­мосферу. Высота продувочных окон подбирается таким образом, чтобы к моменту их открытия давление газов в цилиндре было бы близко к давлению продувочного воздуха в продувочном ресивере. После открытия продувочных окон (точка 6) продувочный воздух, поступая в цилиндр, вытесняет продукты сгорания через выпускные окна, при этом часть воздуха уходит с отработавшими газами. При открытых продувочных окнах происходит принудительная очистка цилиндра и заполнение его свежим зарядом; этот процесс называется продувкой.

Второй такт. Процесс продувки продолжается также при дви­жении поршня вверх от н. м. т. до закрытия продувочных окон (точка 1). После закрытия поршнем выпускных окон (точка 2) процесс выпуска заканчивается и начинается процесс сжатия све­жего заряда воздуха. В конце сжатия (в. м. т.) давление воздуха равно 3,5—5 Мн/м2, а температура составляет 750—800° К. Высо­кая температура воздуха в конце сжатия обеспечивает самовос­пламенение топлива. Затем цикл повторяется.

По тем же соображениям, что и для четырехтактных дизелей, топливо в цилиндр подается с опережением в 10—20° поворота ко­ленчатого вала до в. м. т. (точка 3).

В настоящее время на судах применяют как двухтактные, так и четырехтактные дизели. Для крупнотоннажных грузовых и пас­сажирских судов основным является двухтактный двигатель. Ти­хоходные двухтактные крейцкопфного типа дизеля долговечны, отличаются высокой экономичностью, но имеют большой вес и га­бариты. При одной и той же частоте вращения и одинаковых раз­мерах цилиндров мощность двухтактного двигателя теоретически вдвое больше мощности четырехтактного. Увеличение мощности двухтактного двигателя обусловлено сгоранием вдвое большего количества топлива, чем в четырехтактном, но так как объем ра­бочего цилиндра (из-за наличия выпускных и продувочных окон) используется неполностью, а часть мощности (4—10%) затрачи­вается на приведение в действие продувочного насоса, то факти­ческое превышение мощности в двухтактном двигателе над мощ­ностью четырехтактного составляет 70—80%.

Четырехтактный двигатель при одинаковых мощности и ча­стоте вращения с двухтактным имеет большие размеры и вес. Двухтактный двигатель при одинаковых частоте вращения и числе цилиндров с четырехтактным вследствие удвоенного числа рабо­чих циклов работает более равномерно. Минимальное число ци­линдров, обеспечивающее надежный пуск для двухтактного дви­гателя — четыре, а для четырехтактного — шесть.

Отсутствие клапанов и приводов к ним у двухтактного двига­теля со щелевой продувкой упрощает его конструкцию. Однако на изготовление деталей требуются более прочные материалы, так как двухтактные двигатели работают при более высоких темпера­турных условиях.

В двухтактных двигателях очистка, продувка и зарядка све­жим воздухом цилиндра осуществляется на протяжении части одного хода, поэтому качество этих процессов ниже, чем у четы­рехтактного двигателя.

Четырехтактные двигатели удобнее в отношении повышения их мощности путем наддува. Для них используют более простую схему наддува, теплонапряженность цилиндров меньше, чем у двухтактных дизелей. Для современных четырехтактных дизелей с газотурбинным наддувом удельный эффективный расход топ­лива составляет 0,188—0,190 кг/(квт ? ч), а для двухтактных тихо­ходных дизелей с наддувом 0,204—0,210 кг/(квт?ч).


vdvizhke.ru

принцип работы двухтактных и четырехтактных двигателей

Наверное, для многих является актуальным вопрос: чем же четырехтактный мотор лучше двухтактного? А так же и другие, например: как вообще выбрать лодочный мотор? Для начала рассмотрим внутренее устройство двигателей. Такт рабочего цикла ДВС (двигателя внутреннего сгорания) представляет собой ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При четырехтактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном - за один. Итак, начнем по порядку...

При 4-тактном процессе присутствуют 4 такта: впуск, сжатие, сгорание и расширение, выпуск. А теперь поподробнее.

Впуск

В течение этого такта поршень опускается из ВМТ (т.е. верхней мёртвой точки) в НМТ  (т.е. нижнюю мёртвую точку). При этом кулачки распределительного вала открывают впускной клапан, и через данный клапан в цилиндр засасывается свежая топливно-воздушная смесь.

Сжатие

Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом существенно вырастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ именуется степенью сжатия. Степень сжатия - является очень важным параметром, традиционно, чем она больше, тем больше топливная экономичность лодочного мотора. Впрочем, для двигателя с большей степенью сжатия требуется горючее с более высоким октановым числом, которое несколько подороже.

Сгорание и расширение (рабочий ход поршня).

Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ горючее сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, при этом, - толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси именуется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы давление газов достигло максимальной величины, когда поршень будет находиться в ВМТ. При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, именно поэтому, для повышения производительности мотора необходимо увеличивать угол опережения зажигания при повышении оборотов. В старых лодочных двигателях данная регулировка производилась механическим устройством (центробежным и вакуумным регулятором, воздействующим на прерыватель). В более современных моторах для регулировки угла опережения зажигания применяют электронику.

Выпуск

После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала. Следует также помнить, что следующий процесс (к примеру, впуск), необязательно должен начинаться в тот момент, когда закончится предшествующий (к примеру, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называют - перекрытием клапанов. Перекрытие клапанов необходимо для более лучшего наполнения цилиндров горючей смесью, а также для эффективной очистки цилиндров от отработанных газов.

В случае с двухтактным процессом всё уже не так легко и просто.

Здесь такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном моторе процессы впуска и выпуска все же присутствуют, для их осуществления нужно, чтобы давление на входе в цилиндр было намного выше атмосферного. То есть, необходим принудительный наддув. Те, кто знаком с двухтактными бензиновыми двигателями для мотоциклов, могут конечно же возразить: на мотоциклах нет никаких турбо- либо механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя. В простых мотоциклетных (так же, как и в лодочных) моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня.

Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх, нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт дальше вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень следует снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. После этого сжатая смесь воспламеняется свечой, и поршень идёт вниз, осуществляя пи этом такт расширения, либо рабочий ход.  

А сейчас давайте рассмотрим плюсы и минусы двухтактных лодочных моторов по сравнению с их четырехтактными «собратьями».

Начнем с преимуществ...

 - Меньший вес. К примеру: 15 л.с. двухтактный весит - 36 кг, а вот четырехтактный уже все 50 кг. Казалось бы 50 кг - это легко. Все не так просто. Вес мотора распределен весьма неравномерно. Приблизительно 80% весит голова (т.е. сам двигатель) 20% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это, да еще одна маленькая не всегда комфортная ручка для переноски делает этот процесс ну очень затруднительным.

- Стоимость. Четырехтактные моторы сложнее в производстве, состоят из большего количества деталей, именно поэтому, они всегда будут дороже стоить чем двухтактники.

- Удобство при транспортировке. Двухтактный лодочный мотор можно возить в любом положении, перед началом эксплуатации не требует отвешивания. То есть достал из багажника, поставил, завел и помчался по водной глади.

- Двухтактник живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню следует сделать 2 полных оборота в то время как в двухтактных только один. Частый вопрос: А правда ли что четырехтактник 15 л.с. бежит быстрее чем такой же, но двухтактник? Отвечаем: нет, это не правда! У обоих этих моторов мощность на валу 15 л.с. По логике вещей: при прочих равных условиях, почему один мотор должен ехать быстрее второго?

Теперь коснемся недостатков…

- Больший расход топлива. Напомним, приблизительный расход можно высчитать по формуле: для двухтактного - 300 грамм на 1 л.с., для четырехтактного - 200 грамм на 1 л.с. в час при полном "газе". Больший расход связан с тем, что цикл выброса отработанных газов и впуска свежего топлива у двухтактников совмещен, именно поэтому, часть свежего топлива выбрасывается вместе с отработанными газами в выхлоп. В этом же и заключается экологическая проблема, то есть часть бензина, смешанного с маслом просто выливается в воду. Именно поэтому, двухтакные моторы (кроме моторов с системой по уровневого впрыска) запрещены и в странах ЕС, и в США. 

- Высокий уровень издаваемого шума. На максимальных оборотах 2-х тактные моторы как правило функционируют несколько громче четырехтактников.

- Удобство при эксплуатации. Четырехтактные моторы не так вибрируют на малых оборотах (примечание: это касается только двухцилиндровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно идентично) и не так дымят как их соперники - двухтактники. Дым образуется в основном из-за сгорания масла, которое добавляется непосредственно в бензин у двухтактных моделей. Дымность важный момент, исключительно в том случае, если Вы любите тролить. Достаточно часто это невероятно напрягает особенно в тихую безветренную погоду. 

- Проблема долговечности. Достаточно спорный пункт. В народе бытует такое суждение, что двухтактные лодочные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов мотора подается вместе с бензином, а значит, функционирует не так результативно в отличие от  4-х тактных лодочных моторов, где трущиеся элементы буквально плавают в масле. Однако с другой стороны четырехтактник по своей конструкции гораздо сложнее конкурента, состоит из значительно большего количества деталей, а золотое правило механики "чем проще - тем надежнее" еще никто не отменял!

mirax.ua


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта