Ключ к знанию

Датчик подачи топлива


#10 Что такое впрыск топлива и как работает система впрыска? — DRIVE2

Что такое впрыск топлива и как работает система впрыска?

Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей систем впрыска — механический, моновпрыск, распределенный, непосредственный. В данной статье мы расскажем про современные электронные системы подачи топлива на основе системы управления двигателем, как они работает и из каких датчиков состоят.

Как работает система впрыска топлива?

На рисунке схематично показан принцип работы распределенного впрыска.

Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.

Последний должен быть достаточного объема для исключения воздушного "голодания" цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Датчики системы впрыска топлива

Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.

Датчик кислорода (ДК) — рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.

Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.

Датчик положения дроссельной заслонки (ДПДЗ) — определяет положение дросселя (нажата педаль "газа" или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик детонации — служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики.

Датчик скорости (ДС) — определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.

Датчик фазы (ДФ) — определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.

Датчик неровной дороги — служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).

Исполнительные механизмы системы впрыска

По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ).

Форсунка — электромагнитный клапан с нормированной производительностью (встречаются пьезоэлектрические). Служит для впрыска вычисленного для данного режима движения количества топлива.

Бензонасос — предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.

Модуль зажигания — электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1-4 и 2-3 цилиндрах. То есть реализуется принцип "холостой искры". В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.

Регулятор холостого хода — служит для поддержании заданных оборотов холостого хода. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода (7-12 кг./час) при закрытой дроссельной заслонке.

Вентилятор системы охлаждения — управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.

Сигнал расхода топлива — выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более — менее соответствует истине на системах с ДК.

Адсорбер — является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.

Электронный блок управления

Электронный блок управления — по сути специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.

Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP (чип), отсюда и пошло название чип-тюнинг, то есть изменение программы управления двигателем. Содержимое "чипа" — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.

Следует иметь ввиду, что для правильной работы любой системы впрыска необходимо наличие полностью исправных датчиков и исполнительных механизмов.

Спасибо, что прочитали статью до конца
Удачи на дорогах

www.drive2.ru

Как работает система впрыска топлива?

Как работает система впрыска топлива?
 
C годами, системы подачи топлива, которые используются в современных автомобилях, претерпели значительные изменения для того, чтобы соответствовать стандартам топливной и эмиссионной эффективности. Subaru Justy 1990 г. была последним автомобилем с карбюратором, проданным на территории США, все последующие модельные ряды Justy имели систему впрыска топлива. Однако системы впрыска топлива существовали с 1950-х, а системы электронного впрыска топлива широко использовались в европейских автомобилях с 1980-х. Сейчас все автомобили, продающиеся в США, имеют системы впрыска топлива.
 
В этой статье мы узнаем о том, как топливо попадает в цилиндр двигателя, а также, что означают такие термины, как "впрыск топлива во впускной тракт" и "впрыск топлива в корпусе дроссельных заслонок".
 
Отказ от карбюраторов
 
В течение долгого времени, карбюратор был устройством подачи топлива в двигатели внутреннего сгорания. Он до сих пор используется в таких устройствах, как газонокосилки и бензопилы. Однако с развитием автомобилей, конструкция карбюраторов становилась все сложнее в попытке соответствовать всем техническим требованиям. Например, для того, чтобы справиться с некоторыми задачами, карбюраторы имели пять различных узлов:
 
- Главная дозирующая система - Обеспечивает подачу топлива, достаточного при движении автомобиля со средними скоростями
- Система холостого хода - Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах
- Ускорительный насос - Обеспечивает впрыск дополнительного топлива при нажатии на педаль газа для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля
- Система обогащения смеси - Обеспечивает подачу дополнительного топлива при движении автомобиля в гору или использовании прицепа
- Воздушная заслонка - Обеспечивает подачу дополнительного топлива для запуска холодного двигателя
 
Для соответствия ужесточающимся требованиям к качеству выхлопных газов, стали применять каталитический конвертер. Для эффективной работы каталитического конвертера необходим тщательный контроль состава топливно-воздушной смеси. Кислородные датчики отслеживают количество кислорода в выхлопе, и блок управления двигателем (ECU) использует данную информацию для корректировки состава топливно-воздушной смеси в реальном времени. Это называется регулирование с обратной связью - данный метод невозможно было применять при использовании карбюраторов. Время карбюраторов с электронным управлением было недолгим, после чего стали использоваться системы впрыска топлива, однако устройство электронных карбюраторов было намного сложнее механических.
 
Вначале, карбюраторы заменили на систему впрыска топлива в корпусе дроссельных заслонок (также известная как система одноточечного или центрального впрыска топлива), которая объединяла в себе клапаны инжектора с электрическим управлением и дроссельную заслонку. Такие системы стали простым решением для замены карбюраторов, при этом производителям автомобилей не пришлось значительно изменять конструкции двигателей.
 
Постепенно, с разработкой новых двигателей, система впрыска топлива в корпусе дроссельных заслонок была заменена на систему впрыска топлива во впускной тракт (также известную как точечный, многоточечный или последовательный  впрыск топлива). В этих системах для каждого цилиндра установлен свой инжектор, обычно расположенный таким образом, чтобы впрыск происходил непосредственно во впускной клапан. Такие системы обеспечивают более точный замер расхода топлива и являются более чувствительными.
 
Когда Вы нажимаете на педаль газа
 
Педаль газа Вашего автомобиля соединяется с дроссельной заслонкой - клапаном, который регулирует количество воздуха, поступающего в двигатель. Таким образом, педаль газа - это педаль подачи воздуха.

Когда Вы нажимаете на педаль газа, дроссельная заслонка открывается больше, подавая больше воздуха. Блок управления двигателем (ECU, компьютер, контролирующий все электронные компоненты двигателя) "видит", что дроссельная заслонка открылась, и увеличивает подачу топлива в связи с увеличением подачи воздуха. Необходимо увеличивать подачу топлива при открытии дроссельной заслонки; в противном случае, при нажатии на педаль газа может произойти задержка, т.к. воздух поступает в цилиндры без топлива.
 
Датчики отслеживают массу воздуха, поступающую в двигатель, а также количество кислорода в выхлопе. Блок управления двигателем использует данную информацию для точной регулировки подачи топлива, чтобы обеспечить необходимый состав топливно-воздушной смеси.
 
Инжектор
 
При подаче питания на инжектор, электромагнит перемещает плунжер, который открывает клапан, который распыляет топливо под давлением через небольшую форсунку. Форсунка предназначена для распыления топлива - чем мельче распыление, тем легче сгорает топливо.
 

Срабатывание инжектора
 
Количество топлива, подаваемого на двигатель, определяется временем, в течение которого форсунка остается открытой. Это называется длительность импульса и контролируется блоком управления двигателем.
Инжекторы устанавливаются на впускном коллекторе для распыления топлива непосредственно во впускные клапаны. Труба, которая называется топливная рампа, осуществляет подачу топлива на все инжекторы.
Для обеспечения подачи необходимого количества топлива, блок управления двигателем оснащен множеством датчиков. Давайте рассмотрим некоторые из них.

Датчики двигателя
 
Для обеспечения подачи необходимого количества топлива для всех условий езды, блок управления двигателем (ECU) оснащен множеством датчиков. Ниже представлены некоторые из них:
 
·        Датчик массового расхода воздуха - Передает на блок управления двигателем массу воздуха, поступающего в двигатель
·        Датчик(и) кислорода - Отслеживает количество кислорода в выхлопе для того, чтобы блок управления определил, насколько богатой или бедной является топливная смесь, и произвел необходимые корректировки
·        Датчик положения дроссельной заслонки - Отслеживает положение дроссельной заслонки (которое определяет количество воздуха, поступающего в двигатель) для того, чтобы блок управления произвел корректировку, понижая или повышая количество поступающего топлива
·        Датчик температуры охлаждающей жидкости - Позволяет блоку управления определить, что двигатель разогрелся до нужной рабочей температуры
·        Датчик напряжения - Отслеживает напряжение бортовой сети для того, чтобы блок управления мог увеличить скорость холостого хода при падении напряжения (что является показателем высокой электрической нагрузки)
·        Коллекторный датчик абсолютного давления - Отслеживает давления воздуха во впускном коллекторе
·        Количество поступающего в двигатель воздуха является хорошим показателем производимой мощности; чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе, эти данные используются для определения производимой мощности.
·        Датчик скорости вращения коленчатого вала - Отслеживает число оборотов двигателя, что является одним из показателей для расчета длительности импульса
 
Существует два основных типа контроля многоточечных систем: Все инжекторы могут срабатывать одновременно, либо каждый срабатывает отдельно перед открытием соответствующего впускного клапана цилиндра (такой тип называется последовательный многоточечный впрыск топлива).
 
Преимущество последовательного впрыска топлива заключается в том, что если при езде происходят резкие изменения, то система более быстро реагирует на них, т.к. для изменения необходимо дождаться лишь пока не откроется следующий впускной клапан, вместо того, чтобы дожидаться начала следующего оборота двигателя.

Управление двигателем и Модули увеличения мощности
 
Алгоритмы, контролирующие двигатель, являются довольно сложными. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выхлопу на каждые 100.000 км, требованиям Управления по охране окружающей среды, а также препятствовать раннему износу двигателя. Помимо этого, существует множество требований, которым необходимо соответствовать.
 
Блок управления двигателем использует формулу и большое количество поисковых таблиц для определения длительности импульса для заданных условий работы. Формула представляет собой ряд показателей, умноженных друг на друга. Большая часть показателей берется из поисковых таблиц. Давайте рассмотрим упрощенную формулу вычисления длительности импульса инжектора. В данном примере уравнение будет содержать всего три показателя, в то время как система управления может использовать несколько сотен или даже больше.
 
Длительность импульса = (Начальная длительность импульса) х (Показатель А) х (Показатель В)
 
Для вычисления длительности импульса, блок управления двигателем в первую очередь определяет длительность опорного импульса в поисковой таблице. Начальная длительность импульса представляет собой функцию частоты вращения двигателя (об/мин) и нагрузки (которая вычисляется по абсолютному давлению во впускном коллекторе). Допустим, что частота вращения двигателя составляет 2.000 об/мин при нагрузке 4. Нужное значение мы найдем на пересечении 2.000 и 4, что составляет 8 мс.
 об/минНагрузка
12345
1.00012345
2.000246810
3.0003691215
4.00048121620
 
В следующих примерах, A и B являются показателями, которые поступают с датчиков. Предположим, что A - это температура охлаждающей жидкости, а B - это уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, то, исходя из данных таблицы, мы получаем, что Показатель А = 0,8, а Показатель В = 1,0.
 AПоказатель А
BПоказатель B
01,2
01,0
251,1
11,0
501,0
21,0
750,9
31,0
1000,8
40,75
 
Итак, теперь мы знаем, что начальная длительность импульса является функцией нагрузки и частоты вращения, и что длительность импульса = (начальная длительность импульса) x (Показатель A) x (Показатель B), общая длительность импульса в нашем примере равна:
 
8 x 0,8 x 1,0 = 6,4 мс
 
Исходя из этого примера, Вы теперь понимаете, как система управления совершает корректировки. Если показатель В - это уровень кислорода в выхлопе, в таблице указано, что значение показателя В соответствует (согласно данным конструкторов двигателя) повешенному содержанию кислорода в выхлопе; при этом блок управления двигателем сокращает подачу топлива.
 
Настоящие системы управления используют более 100 показателей, для каждого из которых имеется соответствующая таблица. Некоторые показатели меняются со временем с учетом поправки на изменения эффективности работы некоторых компонентов двигателя, например, каталитического конвертера. И, в зависимости от частоты вращения двигателя, блок управления двигателем выполняет данные вычисления более 100 раз в секунду.
 
Модули увеличения мощности
 
Далее логично будет перейти к модулям увеличения мощности. Теперь, когда мы немного разобрались в том, как работают алгоритмы управления, мы можем понять, что же делают производители модулей увеличения мощности для повышения мощности двигателя.
 
Модули увеличения мощности изготавливаются компаниями, работающими на послегарантийном рынке, и используются для повышения мощности двигателя. В блоке управления двигателем находится модуль, в котором хранятся все поисковые таблицы; модуль увеличения мощности заменяет его. Таблицы в модуле увеличения мощности содержат данные, которые позволяют увеличить подачу топлива в определенных условиях езды. Например, может подаваться больше топлива при полном дросселе на любых оборотах двигателя. Также может быть изменена установка момента зажигания (для этого также существуют таблицы). В связи с тем, что производители модулей увеличения мощности, в отличие от производителей автомобилей, не связаны такими обязательствами, как надежность, пробег и контроль выхлопа, они могут использовать более высокие значения в поисковых таблицах.
 
Для получения большей информации по системам впрыска топлива, рекомендуем ознакомиться с ссылками на следующей странице.

Источник:  https://auto.howstuffworks.com/fuel-injection6.htm
 

 

www.exist.ru

Принципы работы системы электронного впрыска топлива — DRIVE2

Система электронного впрыска топлива (EFI) представляет собой совокупность управляемых топливных клапанов, открываемых электрическим сигналом, и обеспечивающих подачу топлива в двигатель. Соотношение воздух/топливо определяется временем, в течении которого форсунки остаются открытыми во время рабочего цикла. Это время называется длительностью импульса. Компьютер EFI собирает данные с группы датчиков, которые сообщают ему, на каких оборотах работает двигатель и нагрузку на него в данный момент. Имея эти данные, компьютер начинает просматривать находящуюся в его памяти информацию, чтобы определить, как долго он должен держать форсунки открытыми, чтобы обеспечить топливные требования, продиктованные этими условиями. Когда эта информация найдена, она извлекается из памяти и передается к форсункам как импульс напряжения определенной длительности. Длительность импульса измеряется в тысячных долях секунды, или в миллисекундах (мс). Когда этот цикл закончен, программа компьютера сообщает ему, об этом, и он продолжает выполнять его снова и снова, при этом компьютер всегда готов получить новые исходные данные. Все это — получение данных, анализ, и преобразование занимают приблизительно 15 % мощности компьютера. Оставшаяся часть времени это простой процессора. Жаль, что вы не можете получить денежную компенсацию за время бездействия процессора. Датчики, на которые компьютер полагается, чтобы получать информацию — неотъемлемая часть EFI и являются глазам и ушам системы:

Датчик массового расхода воздуха/датчик расхода воздуха. Система впрыска, работающая с датчиком массового расхода воздуха или датчиком расхода воздуха, названа системой впрыска "с массовым расходом". Чувствительный элемент измеряет число молекул воздуха, попадающих в систему в любой момент времени. Если это число разделить на обороты двигателя, это даст точное значение количества топлива, не обходимого для одного рабочего цикла в двигателе.

Датчик температуры воздуха. Плотность воздуха изменяется как функция температуры. Поэтому, компьютер должен знать, что необходимо изменить длительность импульса, если датчик температуры воздуха обнаруживает изменение температуры воздуха.

Барометрический датчик. Плотность воздуха также изменяется с высотой. Датчик атмосферного давления сообщает компьютеру об изменении высоты.

Датчик температуры охлаждающей жидкости. Количество топлива, требуемое двигателю, обратно пропорционально температуре двигателя. Датчик температуры охлаждающей жидкости отражает рабочую температуру двигателя. Холодному двигателю требуется большее количество топлива для того, чтобы получить достаточно паров топлива для воспламенения. Чем более нагрет двигатель, тем легче парообразование, и меньше количество требуемого топлива.

Датчик давления во впускном коллекторе. Не все системы EFJ оборудованы датчиком давления во впускном коллекторе. Те, в которых он присутствует, называются системами EF1, работающими на принципе "плотность/скорость". Когда используется датчик давления во впускном коллекторе, датчик массового расхода воздуха или датчик расхода воздуха становится не нужен. Давление во впускном коллекторе в любой данный момент достаточно точно отражает нагрузку на двигатель. Следовательно, датчик давления во впускном коллекторе сообщает компьютеру данные о текущем эксплуатационном режиме.

Датчик кислорода. Датчик кислорода измеряет количество остаточного кислорода в выхлопных газах после процесса горения. Он установлен в выпускном коллекторе и таким образом становится для компьютера «сторожевым псом» фактического качества смеси. Если датчик обнаруживает слишком большое количество кислорода, компьютер, на основе информации в его памяти, будет немного увеличивать длительность импульсов впрыска, таким образом, добавляя топливо и используя избыточный кислород. Контролируя оставшийся кислород, компьютер может непрерывно поддерживать необходимую длительность импульсов, для обеспечения запрограммированного соотношения воздух/топливо. В жизни датчик кислорода нужен для поддержания соотношения воздух/топливо в рамках, необходимых для работы трехкомпонентного катализатора. Это не устройство для экономии топлива или обеспечения мощности.

Датчик частоты вращения. Импульсы впрыска каждый рабочий цикл должны, конечно, всегда соответствовать частоте вращения двигателя. Датчик оборотов двигателя обеспечивает это, контролируя низковольтные импульсы на катушке зажигания.

Датчик положения распределительного вала. В системе последовательного впрыска датчик положения распределительного вала сообщает блоку управления, в каком порядке работают цилиндры двигателя. По сигналам этого датчика блок управления определяет, в каком порядке осуществлять впрыск.

Датчик положения дроссельной заслонки. Полезная мощность двигателя в значительной степени зависит от положения дроссельной заслонки. Полностью открытая дроссельная заслонка, очевидно, говорит о том, что от двигателя требуется все, на что он способен, и расход топлива должен, в этом случае, быть увеличен. Поэтому, положение дроссельной заслонки является для компьютера важным параметром. Еще один тип данных, которые дает датчик положения дроссельной заслонки — скорость изменения положения дроссельной заслонки. Эта функция становится эквивалентом ускорительного насоса в карбюраторе. Ускорительный насос обеспечивает быстрое обогащение смеси, при быстром открытии дроссельной заслонки.

Дополнительные компоненты системы EFI — топливный насос, регулятор давления, топливопроводы, пневмоклапаны, регулятор холостых оборотов и различные реле.

www.drive2.ru

Что такое система впрыска топлива и как она работает?

Впрыск топлива - это система дозированной подачи топлива в цилиндры двигателя. Расскажем про электронные системы подачи топлива, как они работает и из каких датчиков состоят.

Как работает?
На рисунке схематично показан принцип работы распределенного впрыска.

Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.

Последний должен быть достаточного объема для исключения воздушного "голодания" цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Датчики системы впрыска топлива

Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.


Датчик кислорода (ДК) - рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода - до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.
Датчик положения коленвала (ДПКВ) - считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ - полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик массового расхода воздуха (ДМРВ) - определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.


Датчик температуры охлаждающей жидкости (ДТОЖ) - следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.

Датчик положения дроссельной заслонки (ДПДЗ) - определяет положение дросселя (нажата педаль "газа" или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.


Датчик детонации - служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики. Датчик скорости (ДС) - определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы (ДФ) - определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно - параллельную (групповую) систему подачи топлива.
Датчик неровной дороги - служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).
Исполнительные механизмы
По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ). Форсунка - электромагнитный клапан с нормированной производительностью. Служит для впрыска вычисленного для данного режима движения количества топлива.

Бензонасос - предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.


Модуль зажигания - электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в цилиндрах. В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.

Регулятор холостого хода - служит для поддержании заданных оборотов холостого хода. Представляет собой шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода при закрытой дроссельной заслонке.

Вентилятор системы охлаждения - управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.

Сигнал расхода топлива - выдается на маршрутный компьютер - 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами.

Адсорбер - является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.

Электронный блок управления
Электронный блок управления - микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.

Сама программа хранится в микросхеме ПЗУ, английское название микросхемы - CHIP. Содержимое "чипа" - обычно делится на две функциональные части - собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки - набор (массив) фиксированных данных (переменных) для работы программы управления.

Следует иметь ввиду, что для правильной работы системы впрыска необходимо наличие исправных датчиков и исполнительных механизмов.

amastercar.ru

Непосредственный впрыск топлива бензиновых ДВС. — DRIVE2

Система непосредственного впрыска топлива является самой современной и совершенной, с точки зрения экономия топлива и экологии, системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.

Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей.

Toyota — D4
Mercedes-benz — CGI
Mitsubishi — GDI
Nissan — NEO DI
Renault — IDE
Alfa Romeo — JTS
PSA Peugeot Citroën — HPi
Mazda — DISI; SkyActive
General Motors — Ecotec
Ford — TwinForce, SCTi, EcoBoost
Volkswagen, Audi, Skoda — FSI, TSI, TFSI
Opel — SIDI (Spark Ignition Direct Injection)

Применение системы непосредственного впрыска позволяет достичь до 5-15% экономии топлива в режиме холостого хода и частичных нагрузок, а также сокращения выброса вредных веществ с отработавшими газами.

Устройство системы непосредственного впрыска топлива.

Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI Fuel Stratified Injection – послойный впрыск топлива. Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.

1. топливный бак
2. топливный насос
3. топливный фильтр
4. перепускной клапан
5. регулятор давления топлива
6. топливный насос высокого давления
7. трубопровод высокого давления
8. распределительный трубопровод
9. датчик высокого давления
10. предохранительный клапан
11. форсунки впрыска
12. адсорбер
13. электромагнитный запорный клапан продувки адсорбера

Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПа) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.

Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления. Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре. Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.

В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.

Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

Послойное
Стехиометрическое гомогенное
Гомогенное

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, мгновенный отклик на педаль акселератора) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя — режим макисмальной мощности или больших нагрузках — режим максимального момента. На бедной гомогенной смеси двигатель работает в промежуточных режимах и на холостом ходу, когда нужно обеспичить максимальную экономию топлива. При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия, для этого поршень имеет специальную форму днища. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%, что снижает количество кислорода в камере сгорания.

На практике непосредственный впрыск приносит много головной боли своим владельцам, вся экономия топлива рассыпается в труху о стоимость ремонта и обслуживания.

1. Необходимо следить за чистотой бензина от механических примесей. Что попало (самый дешевый) в эти двигатели не пойдет. Только самый дорогой из доступных, причем АИ-98-100.

Полный размер

2. Приходится часто менять топливные фильтры (обычно 30-60т.км.), причем только оригинальные. Использование неоригингальных топливных фильтров чревато быстрым износом ТНВД и забитыми форсунками, со всеми прелестями их замены или ремонта. Можно конечно рисковать, но в случае чего — выйдет раком очень дорого.

3. При температурах ниже -25-30С ТНВД из-за ухода тепловых зазоров не может развить номинальное давление, с прогревом он конечно довольно быстро приходит в норму. Но с увеличением пробега все становится хуже. Двигатель трясется, пытается — и не заводится нормально. Кроме того, запуск при таких температурах быстро изнашивает ТНВД и форсунки.

4. Каждые 30-60т.км. необходимо обслуживать всю топливную систему — промывать форсунки, менять уплотнительные колечки, проверять все насосы и при необходимости менять (насос низкого давления) либо ремонтировать (насос высокого давления). Иначе можно "встать" колом.

Полный размер

5. Нужно подбирать масло так, чтобы оно не сильно загаживало камеру сгорания и впускные клапана (а значит зола не больше 1,15%, а в некоторых случаях и все 0,8-1% что явно не способствует стойкости масла и сроку жизни ДВС до износа), но так чтобы предотвратить износ распредвалов, цепей, шестерен и прочего. Подобрать такое масло — не так то просто, даже сами автопроизводители в своих допусках уже запутались…и даже придумали новую страшилку — проблема LSPI. Несите ваши денежки за новые масла…только это вам не поможет. Выбирайте — повышенный износ всего двигателя, но чистые от нагара клапана и каналы, либо — низкий износ и все заросшее нагаром, с опасностью клина. Хороший выбор, не правда ли? Что в лоб, что по лбу…особенно печально в свете того, что многие двигатели с непосредственным впрыском имеют пластинчатую цепь Морзе, либо кулачки распредвалов непосредственно скользят по толкателям клапанов без роликовых механизмов, имеющую крайне высокие требования к противозадирным и противоизносным компонентам ZDDP и ZP, содержание которых приходится постоянно снижать, с все ужесточающимися экологическими нормами. Сюда нужны исключительно полнозольники…иначе износ к 150т.км. будет критическим. Раз в пару-тройку лет — обязательная чистка.

www.drive2.ru

Что такое впрыск топлива ⋆ CHIPTUNER.RU

Что такое «впрыск топлива»

Инжектор или впрыск (от английского inject – «впрыск») топлива – система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей впрыска – механический, моновпрыск, распределенный, непосредственный. Мы будем рассматривать только относительно современные электронные системы распределенной подачи топлива, на основе ЭСУД (электронной системы управления двигателем) рассчитывающей подачу топлива на основе сигналов установленных на двигателе датчиков. 

На рисунке схематично показан принцип многоточечного распределенного впрыска. Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход (MAF) или давление в ресивере (MAP). Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров  при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.Распределенный или точечный (то есть, когда на каждый цилиндр работает своя форсунка) впрыск топлива делится на три типа:

Одновременный, когда за один оборот коленвала (360°) все 4 форсунки отрабатывают одновременно.

• Попарно-параллельный (попеременный синхронный двойной впрыск), когда за один форсунки отрабатывают парами (1–4 и 2–3) каждые 180° оборота коленвала. Т.е за один оборот каждая пара срабатывает 1 раз. Частный случай такой системы – Bosch MP7.0H. Отличие: пары форсунок 1–3 и 2–4.

• Фазированный или последовательный, когда за один рабочий цикл двигателя каждая форсунка отрабатывает по одному разу в соответствии с фазой впрыска через каждые 180° оборота коленвала. Порядок работы – классический 1–4‑3–2.

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном – в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном – 1, поэтому время ее работы увеличено примерно в 2 раза.

I. Датчики

Итак, начнем с информации, необходимой ЭБУ (Электронному блоку управления) для управления впрыском и зажиганием, т.н «Определяющие параметры»

Положение коленвала Датчик положения коленвала (ДПКВ)
Частота вращения коленвала Датчик положения коленвала (ДПКВ)
Массовый расход воздуха Датчик массового расхода воздуха (ДМРВ)
Температура охлаждающей жидкости Датчик температуры ОЖ (ДТОЖ)
Положение дроссельной заслонки Датчик положения дроссельной заслонки (ДПДЗ)
Напряжение питания бортовой сети автомобиля Электронный блок управления ДВС
Скорость движения автомобиля

chiptuner.ru

Как блок управления двигателем регулирует подачу топлива. » Хабстаб


Элементы электронной системы управления впрыском топлива (EFI).
Чтобы понять как строится топливная карта, необходимо знать какие параметры в ней описываются. Центр системы EFI – электронный блок управления двигателем (ECU). Этот компонент еще называют “мозгом автомобиля”. Датчики, расположенные в двигателе и в остальных частях автомобиля, посылают информацию в ECU, он анализирует эту информацию и использует ее для того, чтобы оптимизировать работу двигателя. Внешне ECU выглядит как черная пластиковая коробка, месторасположения которой зависит от производителя. Одни производители устанавливают его рядом с аккумуляторной батареей, другие около бардачка, третьи под одним из сидений.

Однако сам по себе ECU бесполезен, он лишь обработчик информации, приходящей с датчиков. Несмотря на то что в автомобиле существует множество датчиков, мы рассмотрим те из них, показания которых используются для построения топливной карты.

Датчик массового расхода воздуха.
Этот датчик измеряет количество воздуха, поступающего в двигатель. Во время движения двигатель автомобиля потребляет больше воздуха, чем на холостом ходу. Количество воздуха определяет количество топлива, которое будет впрыснуто в цилиндр.

Датчик кислорода.
Этот датчик расположен в выхлопной системе и определяет количество не сгоревшего в двигателе кислорода и топлива. ECU может регулировать длительность открытия форсунок, тем самым регулируя количество топлива, поступающего в цилиндр.

Датчик положения дроссельной заслонки.
Этот датчик сообщает ECU с какой силой водитель давит на педаль газа. Чем сильнее и быстрее водитель давит на педаль, изменяя положение дроссельной заслонки, тем больше топлива необходимо впрыснуть в цилиндр.

Датчик абсолютного давления в коллекторе.
Датчик измеряет изменение давления наддува в двигатель. Этот датчик может применяться как вместе с датчиком массового расходомера воздуха, так и вместо него.

Датчик скорости.
Сообщает ECU скорость движения автомобиля. Данные с этого датчика также приходят на спидометр и блок круиз-контроля.

Топливную карту можно представить себе как бумажный листок в клеточку на котором отмечены оси Х и У. На оси У отмечают количество обороты в минуту, на оси Х отмечают нагрузку на двигатель, или энергию необходимую двигателю для выполнения поставленной задачи. Одинаковым оборотам двигателя могут соответствовать разные ситуации на дороге, при этом двигатель испытывает разные нагрузки. Вся эта информация отображается в топливной карте.

Для работы с топливной картой ECU получает информацию со следующих датчиков:

  • датчик скорости;
  • датчик температуры поступающего воздуха;
  • датчик абсолютного давления;

На основе этих данных ECU находит ячейку на топливной карте, в которой указана длительность импульса, подаваемого на форсунку. Хотелось бы отметить, что ECU обращается к топливным картам в тех режимах, когда показания лямбда-зонда не учитываются. Например, запуск/прогрев двигателя или резкое ускорение.

Есть два основных типа людей, которые хотели бы внести изменения в топливную карту — “любители погонять” и “топливные скряги”. “Любители погонять” заинтересованы в увеличении скорости автомобиля несмотря на пустую трату денег, в виде не сгоревшего топлива в выхлопных газах. Противоположность им это водители, которые готовы жертвовать производительностью автомобиля ради экономии топлива. Существуют даже датчики абсолютного давления, которые позволяют водителю регулировать расход топлива вручную.

Необходимо помнить, что для правильной работы ECU надо получать достоверную информацию с датчиков. Если датчик отправит неверную информацию, ECU не сможет правильно скорректировать работу двигателя. Обычно ошибочная информация приходит по следующим причинам:

  • обрыв проводов, соединяющих датчик и ECU;
  • плохой контакт в месте соединения проводов с датчиком или ECU;
  • загрязнение датчика;
  • отказ датчика;

Давайте рассмотрим как поведет себя автомобиль, если при подъеме в гору массовый расходомер воздуха будет давать неверные данные. При подъеме в гору двигатель испытывает большую нагрузку и ему необходимо больше топлива чем в шоссейном режиме. ECU получая данные с массового расходомера воздуха, будет искать соответствующую точку на топливной карте. Если данные с расходомера будут немного меньше реальных, то точка на топливной карте будет соответствовать меньшему времени впрыска. В такой ситуации двигатель будет казаться вялым, плохо тянуть, дергаться, так как он не получает нужного количества энергии, для выполнения этой работы. Если же данные с расходомера будут немного завышены, двигатель будет плохо набирать обороты, а из глушителя будет идти черный дым, а причина все та же, двигатель не получает нужного количества энергии.

hubstub.ru

Cистема впрыска топлива - из чего она состоит?

Одной из важнейших рабочих систем практически любого автомобиля, является система впрыска топлива, ведь именно благодаря ей определяется объем топлива необходимый двигателю в конкретный момент времени. Сегодня мы рассмотрим принцип действия данной системы на примере некоторых ее видов, а также ознакомимся из существующими датчиками и исполнительными механизмами.

1. Особенности работы системы впрыска топлива

На выпускаемых сегодня двигателях, уже давно не применяется карбюраторная система, которая оказалась полностью вытесненной более новой и усовершенствованной системой впрыска топлива. Впрыском топлива принято называть систему дозированной подачи топливной жидкости в цилиндры мотора транспортного средства. Она может устанавливаться как на бензиновых, так и на дизельных двигателях, однако, понятно, что конструкция и принцип работы будут разные. При использовании на бензиновых двигателях, при впрыске, появляется однородная топливовоздушная смесь, которая принудительно воспламеняется под воздействием искры свечи зажигания.

Что касается дизельного типа двигателя, то здесь впрыск топлива осуществляется под очень высоким давлением, при чем, необходимая порция топлива смешивается с горячим воздухом и практически сразу воспламеняется. Величина порции впрыскиваемого топлива, а заодно и общая мощность двигателя, определяется давлением впрыска. Следовательно, чем больше давление, тем вышей становится мощность силового агрегата.

На сегодняшний день, существует довольно весомое количество видового разнообразия этой системы, а к основным видам относят: систему с непосредственным впрыском, с моно впрыском, механическую и распределенную система.

Принцип работы системы прямого (непосредственного) впрыска топлива заключается в том, что топливная жидкость, с помощью форсунок, подается прямо в цилиндры двигателя (например, как у дизельного мотора). Впервые такая схема использовалась в военной авиации времен Второй Мировой и на некоторых автомобилях послевоенного периода (первым был Goliath GP700). Однако, система прямого впрыска того времени, не смогла завоевать должной популярности, причиной чего стали требуемые для работы дорогие топливные насосы высокого давления и оригинальная головка блока цилиндров.

В итоге, инженерам так и не удалось добиться от системы рабочей точности и надежности. Лишь в начале 90-годов ХХ века, из-за ужесточения экологических норм, интерес к непосредственному впрыску опять начал возрастать. В числе первых компаний, запустивших производство таких двигателей, были Mitsubishi, Mercedes-Benz, Peugeot-Citroen, Volkswagen, BMW.

В целом, прямой впрыск можно было бы назвать пиком эволюции систем питания, если бы не одно но…Такие двигатели очень требовательны в плане качества топлива, а при использовании обедненных смесей, еще и сильно выделяют оксид азота, с чем приходится бороться путем усложнения конструкции мотора.

Одноточечный впрыск (еще называют «моновпрыском» или «центральным впрыском») - представляет из себя систему, которая в 80-х годах ХХ века начала применятся как альтернатива карбюратору, тем более что принципы их работы очень схожи: потоки воздуха смешиваются с топливной жидкостью во впускном коллекторе, вот только на смену сложному и чувствительному к настройкам карбюратору, пришла форсунка. Конечно, на начальной стадии развития системы, никакой электроники вообще не было, а подачей бензина управляли механические устройства. Однако, не смотря на некоторые недостатки, использование впрыска все равно обеспечивало двигателю куда более высокие показатели мощности и значительно большую топливную экономичность.

А все благодаря той же форсунке, которая позволила намного точнее дозировать топливную жидкость, распыляя ее на мелкие частицы. В результате смеси с воздухом, получалась однородная смесь, а при изменении условий движения автомобиля и режима работы мотора, практически мгновенно менялся и ее состав. Правда, без минусов тоже не обошлось. К примеру, так как, в большинстве случаев, форсунка устанавливалась в корпус бывшего карбюратора, а громоздкие датчики утрудняли «дыхание мотора», поступающий в цилиндр поток воздуха встречал серьезное сопротивление. С теоретической стороны, такой недостаток мог быть легко устранен, но вот с имеющимся плохим распределением топливной смеси, никто и ничего тогда сделать не смог. Наверное, поэтому, и в наше время, одноточечный впрыск так редко встречается.

Механическая система впрыска появилась еще в конце 30-х годов ХХ века, когда начала использоваться в системах топливного питания самолетов. Она была представлена в виде системы впрыска бензина дизельного происхождения, используя для этого топливные насосы высокого давления и закрытые форсунки каждого отдельного цилиндра. Когда же их попытались установить на автомобиль, то оказалось, что они не выдерживают конкуренцию карбюраторных механизмов, а виной тому существенная сложность и высокая стоимость конструкции.

Впервые, система впрыска низкого давления была установлена на автомобиле компании MERSEDES в 1949 году и по эксплуатационным характеристикам сразу же превзошла топливную систему карбюраторного типа. Данный факт дал толчок дальнейшим разработкам идеи впрыска бензина для автомобилей, оборудованных двигателем внутреннего сгорания. С точки зрения ценовой политики и надежности в эксплуатации, наиболее удачной в этом плане, получилась механическая система "K-Jetronic" компании BOSCH. Ее серийной производство было налажено еще в 1951 году и она, практически сразу, получила широкое распространение почти на всех марках европейских автомобильных производителей.

Многоточечный (распределенный) вариант системы впрыска топлива, отличается от предыдущих наличием индивидуальной форсунки, которая устанавливалась во впускном патрубке каждого отдельного цилиндра. Ее задача – подавать топливо непосредственно на впускной клапан, что означает приготовление топливной смеси прямо перед подачей в камеру сгорания. Естественно, что в таких условиях, она будет иметь однородный состав и примерно одинаковое качество в каждом из цилиндров. Как результат, значительно повышается мощность мотора, его топливная экономичность, а также снижается уровень токсичности выхлопных газов.

На пути развития системы распределенного впрыска топлива иногда встречались определенные сложности, однако, она все равно продолжала совершенствоваться. На начальном этапе, она также, как предыдущий вариант, управлялась механическим путем, однако, стремительное развитие электроники, не только сделало ее более эффективной, но и дало шанс скоординировать действия с остальными компонентами конструкции мотора. Вот и получилось, что современный двигатель способен просигнализировать водителю о неисправности, в случае необходимости самостоятельно переключится на аварийный рабочий режим или заручившись поддержкой систем безопасности, исправить отдельные ошибки в управлении. Но все это, система выполняет с помощью определенных датчиков, которые призваны фиксировать малейшие изменения в деятельности той или иной ее части. Рассмотрим основные из них.

2. Датчики системы впрыска топлива

Датчики системы впрыска топлива предназначены для фиксации и передачи информации от исполнительных устройств к блоку управления работой двигателя и обратно. К ним относят следующие устройства:

Датчик кислорода. Его чувствительный элемент размещен в потоке выхлопных (отработанных) газов, а когда рабочая температура достигает значения 360 градусов по Цельсию, датчик начинает вырабатывать собственную ЭДС, которая прямо пропорциональна количеству кислорода в отработанных газах. С практической точки зрения, когда петля обратной связи замкнута, сигнал датчика кислорода являет собой быстро меняющееся напряжение, находящееся между 50 и 900 милливольтами. Возможность смены напряжения вызвана постоянным изменением состава смеси рядом с точкой стехиометрии, а сам датчик не приспособлен для генерации переменного напряжения.

В зависимости от подачи питания выделяют два вида датчиков: с импульсным и постоянным питанием нагревательного элемента. При импульсном варианте, подогрев датчика кислорода осуществляет электронный блок управления. Если же его не прогреть, то он будет иметь высокое внутреннее сопротивление, что не позволит вырабатывать собственную ЭДС, а значит блок управления будет «видеть» только указанное стабильное опорное напряжение. В ходе прогрева датчика, происходит уменьшение его внутреннего сопротивления и начинается процесс генерации собственного напряжения, что сразу становится известным ЭБУ. Для блока управления это есть сигналом готовности к применению в целях регулировки состава смеси.

Датчик массового расхода воздуха используется для получения оценки количества воздуха, который поступает в двигатель машины. Он – часть электронной системы управления работой двигателя. Данное устройство может применятся вместе с некоторыми другими датчиками, такими как датчик температуры воздуха и датчик атмосферного давления, которые выполняют корректировку его показаний.

В состав датчика расхода воздухавходят две платиновые нити, нагреваемые электротоком. Одна нить пропускает через себя воздух (охлаждаясь таким способом), а вторая является контрольным элементом. С помощью первой платиновой нити, вычисляется количество воздуха попавшего в двигатель.

Основываясь на информации получаемой от датчика расхода воздуха, ЭБУ рассчитывает требуемый объем топлива, необходимый для поддержания стехиометрического соотношения воздуха и топлива в заданных рабочих режимах двигателя. Кроме того, электронный блок использует полученную информацию для определения режимной точки мотора. На сегодняшний день существует несколько различных видов датчиков, отвечающих за массовый расход воздуха: например, ультразвуковые, флюгерные (механические), термоанемометрические и т.д.

Датчик температуры охлаждающей жидкости (ДТОЖ). Имеет вид термистора, тоесть резистора, в котором электрическое сопротивление может изменяться в зависимости от температурных показателей. Термистор располагается внутри датчика и выражает отрицательный коэффициент сопротивления температурных показателей (с нагреванием сила сопротивления уменьшается).

Соответственно, при высокой температуре охлаждающей жидкости – наблюдается низкое сопротивление датчика (примерно 70 Ом при 130 градусах за Цельсием), а при низкой – высокое (примерно 100800 Ом при -40 градусах за Цельсием). Как и большинство других датчиков, данное устройство не гарантирует точные результаты, а значит говорить о зависимости сопротивления температурного датчика охлаждающей жидкости от температурных показателей можно только примерно. В общем, хоть описанное устройство и практически не ломается, но иногда серьезно «заблуждается».

Датчик положения дроссельной заслонки. Монтируется на дроссельный патрубок и связывается с осью самой заслонки. Он представлен в виде потенциометра, имеющего три конца: на один подается плюсовое питание (5В), а другой соединяется с массой. Третий вывод (от ползунка) передает выходной сигнал к контролеру. Когда при нажатии педали дроссельная заслонка поворачивается, выходное напряжение датчика меняется. Если дроссельная заслонка пребывает в закрытом состоянии, то, соответственно, оно ниже 0,7 В, а когда заслонка начинает открываться – напряжение растет и в полностью открытом положении должно быть больше 4 В. Следя за выходным напряжением датчика, контролер, в зависимости от угла открытия дроссельной заслонки, совершает коррекцию подачи топлива.

Учитывая, что контролер сам определяет минимальное напряжение устройства и принимает его за нулевое значение, данный механизм не нуждается в регулировке. По мнению, некоторых автолюбителей, датчик положения дросселя (если он отечественного производства) – это самый ненадежный элемент системы, требующий периодической замены (часто уже через 20 километров пробега). Все бы ничего, но и замену произвести не так то просто, особенно не имея при себе качественного инструмента. Все дело в креплении: нижний винт вряд ли получится открутить обычной отверткой, а если и получится, то сделать это довольно трудно.

Кроме того, при закручивании на заводе, винты «сажают» на герметик, который так из «припечатывает», что при откручивании часто срывается шляпка. В таком случае, рекомендуется полностью снять весь дроссельный узел, а в худшем случае – придется его выковыривать насильно, но только если Вы полностью уверены в его нерабочем состоянии.

Датчик положения коленчатого вала (ДПВК). Служит для передачи контролеру сигнала о частоте вращения и положении коленвала. Такой сигнал является серией повторяемых электроимпульсов напряжения, которые генерируются датчиком в ходе вращения коленчатого вала. Основываясь на полученных данных контролер может осуществлять управление форсунками и системой зажигания. Датчик положения коленвала устанавливается на крышке масляного насоса, на расстоянии одного миллиметра (+0,4мм) от шкива коленчатого вала (имеет 58 зубцов расположенных по кругу).

Что бы обеспечить возможность генерации «импульса синхронизации», два зуба шкива отсутствуют, тоесть фактически их 56. Когда коленвал вращается, зубцы диска меняют магнитное поле датчика, создавая тем самым, импульсное напряжение. Исходя из характера импульсного сигнала, поступающего от датчика, контролер может определить положение и частоту вращения коленвала, что позволяет рассчитать момент срабатывания модуля зажигания и форсунок.

Датчик положения коленчатого вала является самым главным из всех приведенных здесь и в случае появления неисправности механизма, двигатель автомобиля работать не будет. Датчик скорости. Принцип деятельности этого устройства основывается на эффекте Холла. Суть его работы заключается в передаче контролеру импульсов напряжения, с частотой прямо пропорциональной скорости вращения ведущих колес транспортного средства. Исходя из присоединительных разъемов колодки жгута, все датчики скорости могут иметь некоторые отличия. Так, например, разъем квадратной формы используется в системах «Бош», а круглый – соответствует системам Январь4 и GM.

На основе исходящих сигналов датчика скорости, система управления может определить пороги отключения подачи топлива, а также установить электронные скоростные ограничения автомобиля (доступно в новых системах).

Датчик положения распределительного вала (или как его еще называю «датчик фаз») – это устройство, предназначенное для определения угла распределительного вала и передачи соответствующей информации в электронный блок управления транспортного средства. После этого, на основе полученных данных, контролер может осуществить управление системой зажигания и подачей топлива на каждый отдельный цилиндр, что собственно, он и делает.

Датчик детонации применяется с целью поиска детонационных ударов в двигателе внутреннего сгорания. С конструктивной точки зрения, он является заключенной в корпусе пьезокерамической пластиной, располагающейся на блоке цилиндров. В наше время, существует два вида датчика детонации – резонансный и более современный широкополосный. В резонансных моделях, первичная фильтрация сигнального спектра, проводиться внутри самого устройства и напрямую зависит от его конструкции. Поэтому, на разных типах двигателя используются разные модели датчиков детонации, отличающиеся друг от друга резонансной частотой. Широкополосный вид датчиков обладает ровной характеристикой в диапазоне шумов детонации, а фильтрацию сигнала выполняет электронный блок управления. На сегодняшний день, резонансные датчики детонации уже не устанавливаются на серийных моделях автомобилей.

Датчик абсолютного давления. Обеспечивает отслеживание перемен в атмосферном давлении, которые случаются в результате изменения барометрического давления и/или изменения показателей высоты над уровнем море. Барометрическое давление можно измерить в ходе включения зажигания, до того как двигатель начнет прокручиваться. С помощью электронного блока управления, есть возможность «обновления» данных о барометрическом давлении при работающем моторе, когда, на малой частоте вращения двигателя, дроссельная заслонка практически полностью открыта.

Также, использовав датчик абсолютного давления, есть возможность измерить изменение давления во впускной трубе. К переменам в давлении приводят изменения нагрузок двигателя и частоты вращения коленвала. Датчик абсолютного давления трансформирует их в выходной сигнал, имеющий определенное напряжение. Когда дроссель находится в закрытом положении, получается, что выходной сигнал абсолютного давления дает сравнительно низкое напряжение, в то время как полностью открытая дроссельная заслонка - соответствует сигналу высокого напряжения. Появление высокого выходного напряжения объясняется соответствием атмосферного давления и давления внутри впускной трубы при полном открытой дроссельной заслонки. Показатели внутреннего давления трубы рассчитываются электронным блоком управления, основываясь на сигнале датчика. Если оказалось, что оно высокое, значит требуется повышенная подача топливной жидкости, а если давление низкое, то наоборот – пониженная.

Электронный блок управления (ЭБУ). Хоть это и не датчик, но учитывая, что он имеет непосредственное отношение к работе описанных устройств, мы посчитали за нужное внести и его в данный список. ЭБУ – «мозговой центр» системы впрыска топлива, который постоянно обрабатывает информационные данные получаемые от разных датчиков и на основе этого совершает управление выходными цепями (системы электронного зажигания, форсунок, регулятором холостого хода, разными реле). Блок управления оборудован встроенной диагностической системой, способной распознавать сбои в работе системы и, с помощью контрольной лампы «CHECK ENGINE», предупреждать о них водителя. Более того, в его памяти хранятся диагностические коды, которые указывают конкретные области неисправности, что значительно облегчает проведение ремонтных работ.

В состав ЭБУ входит три вида памяти: постоянное запоминающее устройство с возможностью программирования (RAM и ППЗУ), оперативное запоминающее устройство (RAM или ОЗУ) и запоминающее устройство подлежащее электрическому программированию (ЭПЗУ или EEPROM). ОЗУ используется микропроцессором блока для временного хранения результатов измерений, расчетов и промежуточных данных. Данный вид памяти зависит от энергического обеспечения, а значит требует для сохранения информации, постоянной и стабильной подачи питания. В случае перерыва подачи электропитания, все имеющиеся в ОЗУ коды диагностики неполадок и расчетная информация сразу стираются.

ППЗУ хранит общую рабочую программу, которая содержит последовательность необходимых команд и разную калибровочную информацию. В отличие от предыдущего варианта, данный вид памяти не есть энергозависимым. ЭПЗУ применяется для временного сохранения кодов-паролей иммобилайзера (противоугонной автомобильной системы). После того, как контролер принял эти коды от блока управления иммобилайзера (если такой имеется), они сравниваются с уже сохраненными в ЭПЗУ, а затем, принимается решение о разрешении или запрещении запуска мотора.

3. Исполнительные механизмы системы впрыска

Исполнительные механизмы системы впрыска топлива представлены в виде форсунки, бензонасоса, модуля зажигания, регулятора холостого хода, вентилятора системы охлаждения, сигнала расхода топлива и адсорбера. Рассмотрим каждый из них более подробно. Форсунка. Выполняет роль электромагнитного клапана с нормированной производительностью. Используется для впрыска определенного количества топлива, рассчитанного для конкретного рабочего режима.

Бензонасос. Применяется для перемещения топлива в топливную рампу, давление в которой поддерживается с помощью вакуумно-механического регулятора давления. В некоторых вариантах системы, он может быть совмещен с бензонасосом.

Модуль зажигания являет собой электронные устройство, предназначенное для управления процессом искрообразования. Состоит из двух независимых каналов для поджога смеси в цилиндрах мотора. В последних, модифицированных вариантах устройства, его низковольтные элементы определены в ЭБУ, а что бы получить высокое напряжение используется либо двухканальная выносная катушка зажигания, либо те катушки, которые находятся непосредственно на самой свече.

Регулятор холостого хода. Его задачей есть поддержание заданных оборотов в режиме холостого хода. Регулятор представлен в виде шагового двигателя, управляющего в корпусе дроссельной заслонки обводным каналом воздуха. Это обеспечивает мотор необходимым для работы воздушным потоком, особенно когда дроссельная заслонка закрыта. Вентилятор охладительной системы, как и следует из названия, не допускает перегрева деталей. Управляется ЭБУ, который реагирует на сигналы датчика температуры охлаждающей жидкости. Как правило, разница между положениями включения и выключения составляет 4-5°С.

Сигнал расхода топлива – поступает на маршрутный компьютер в соотношении 16000 импульсов на 1 расчетный литр использованного топлива. Конечно, это только приблизительные данные, ведь они рассчитываются на основе суммарного времени, потраченного на открытие форсунок. К тому же, учитывается некий эмпирический коэффициент, который нужен, что бы компенсировать допущение в измерении погрешности. Неточности в расчетах, вызваны работой форсунок в нелинейном участке диапазона, несинхронной топливоотдачей и некоторыми другими факторами.

Адсорбер. Существует в качестве элемента замкнутой цепи в ходе рециркуляции бензиновых паров. Стандарты Евро-2 исключают возможность контакта вентиляции бензобака с атмосферой, а бензиновые пары должны адсорбироваться и в ходе продувки отправляться на дожег.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества — Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

wikers.ru

Как работает инжектор? / Habr

В заметке пойдет речь о работе «мозгов», управляющих двигателем вашего автомобиля или мотоцикла. Попытаюсь на пальцах и в общем объяснить что же и как происходит.

Чем занимаются те самые «мозги» и для чего они нужны? Электроника — альтернатива другим системам, выполняющим те же функции. Дозированием топлива занимался карбюратор, зажиганием управлял механический или вакуумный корректор угла опережения зажигания. В общем не электроникой единой возможно реализовать все это и достаточно продолжительное время именно так и было. На автомобилях, мотоциклах, бензопилах, бензогенераторах и во многих многих других местах работали и продолжают работать те самые системы, которые призван заменить инжектор.
Зачем же понадобилось что-то менять? Зачем сносить существующие проверенные и весьма надежные системы? Все просто — гонка за экономичностью, экологичностью и мощностью. Точность работы описанных выше систем недостаточна для обеспечения желаемого уровня экологичности и мощности, а сами по себе электронные системы управления двигателем начали появляться достаточно давно.

Я опущу принцип работы поршневых ДВС, многие знакомы с тем как работает двигатель, а те кто не знакомы — не слишком пострадают. В разрезе работы системы питания и системы зажигания двигатель это просто преобразователь воздушно-топливной смеси в механическую энергию. Можно рассматривать его как черный ящик, с некоторыми особенностями.

Итак, у нас есть топливо (бензин, этанол, пропан или метан), есть воздух и желание получить из этого механическую энергию. Сложность состоит в том, что для получения интересующих нас характеристик надо смешивать топливо и воздух в точно определенных пропорциях и поджигать их в достаточно точно определенный момент времени. Более того — при недостаточной точности мы получим ухудшение характеристик.

Вся суть работы «мозгов» сводится к дозированию топлива и поджигом смеси в цилиндрах двигателя. Это основные функции. Кроме них есть еще и дополнительные — управление турбиной, управление трансмиссией.

Подсистема, занимающаяся дозированием топлива называется инжектор, поджигом топлива занимается зажигание. Воздух в двигатель поступает «естественным» порядком. Двигатель сам всасывает воздух, его количество только может ограничиваться, для снижения мощности двигателя. Нам не нужна максимальная мощность все время, бОльшую часть времени мощность как раз ограничивается. В случае с турбиной воздух попадает в двигатель принудительно, но это не меняет сути. Воздуха столько сколько есть и мы управляем его количеством при помощи педали.
Сколько топлива нам надо подать в двигатель и как его дозировать? Есть так называемое стехиометрическое отношение, показывающее, что для полного сжигания килограмма топлива нам нужно вполне определенное количество воздуха. Для бензина это соотношение равно 14,7:1. также его называют AFR (Air Fuel Rate по английски) Это не аксиома, это некий оптимум. Смесь может быть «беднее», в ней может быть меньше топлива. Такая смесь хуже горит, двигатель сильнее греется, но сгорает все полностью. Это значения в большую сторону — AFR 15 и более. Может быть и «богаче», когда топлива больше — AFR 14 или меньше. При таком соотношении смесь сгорает не полностью, но мощность двигателя максимальна. И в ту и в другую сторону есть ограничения — если слишком увлечься, работать двигатель не будет. Нельзя просто налить 20 частей топлива и ожидать пропорционального прироста мощности.

Итак, чтобы определить сколько же топлива нам надо подать в двигатель нам надо знать сколько воздуха в него поступает. Дальше все просто — из количества воздуха по соотношению определяем количество бензина и дело сделано!
Погодите ка, а как же нам определить сколько воздуха поступает в двигатель? Для этого есть несколько путей. Обычно используют один из следующих датчиков:

ДМРВ или MAFдатчик массового расхода воздуха. Датчик этот измеряет количество проходящего через него воздуха. Как подсказывает википедия — «Датчик состоит из двух платиновых нитей, нагреваемых электрическим током. Через одну нить, охлаждая её, проходит воздух, вторая является контрольной. По изменению тока проходящего через охлаждаемую воздушным потоком платиновую нить вычисляется количество воздуха, поступающего в двигатель.». Датчики такого типа зачастую устанавливаются в гражданские автомобили. В общем то все достаточно просто. Похоже, это именно то, что нужно! Примерно так и есть.

Другой тип датчиков

ДАД или MAPдатчик абсолютного давления. Этот датчик подключен к впускному коллектору и измеряет разрежение (или же избыточное давление, в случае с наддувом) в коллекторе. На основании показаний этого датчика и датчиков температуры, частоты вращения коленвала тоже можно вычислить объем поступающего воздуха, что нам и требуется. Для корректировки его показаний надо еще знать давление окружающего воздуха. Для измерения атмосферного давления либо ставят еще один такой же датчик, который непрерывно его измеряет, либо просто до запуска двигателя измеряют давление. Во втором случае может выйти неприятность, если вы с берега моря рванули прямиком на Эверест.
MAP часто ставят на спортивные автомобили.

Устанавливается один из этих датчиков, наличие одного из них — обязательно.
Ну что же, сколько воздуха поступает в двигатель мы примерно можем вычислить.
Другой обязательный датчик —
ДПКВ или датчик положения коленвала. Этот датчик позволяет мозгам точно знать, в каком положении находится коленвал. Зачем нам это нужно? Мало знать сколько топлива надо подать в двигатель, надо подавать его в определенный момент времени. Да и зажигать смесь в цилиндрах тоже надо строго вовремя. Так что без этого датчика — никак. Есть несколько типов таких датчиков, но большинство из них — либо индукционные, либо датчики Холла, либо подобные им. В общем — бесконтактные датчики, подобные тем, которые трудятся, например, в двигателе вашего винчестера. Или в кулерах.
Следующий датчик, который вместе с ДПКВ дает еще больше информации о том, что же происходит в двигателе в данный конкретный момент — ДПРВдатчик положения распредвала. Также его называют датчиком фаз. При помощи этого датчика можно понять в каком из цилиндров в данный момент такт впуска, куда же нам надо подавать топливо, в каком цилиндре у нас такт сжатия и время поджигать смесь. По принципу работы он подобен ДПКВ, но зачастую несколько проще. В общем то тоже самое, но на распредвале.

Этого набора датчиков нам должно хватить для запуска двигателя. Худо бедно, но этого достаточно, чтобы примерно понять сколько надо подавать топлива, когда это делать и когда поджигать полученный коктейль.
Так давайте же тогда подавать и поджигать! (не путать с разжигать и науськивать)

Исполнительные механизмы

Топливо дозируется форсунками или другими словами «инжекторами». Да да, именно по названию этого узла все это безобразие нами так и называется. Форсунка из себя ничего особо интересного не представляет. Просто электромеханический клапан. Два провода и трубопровод с топливом под давлением. Подали напряжение на выводы — форсунка открылась, прекратили пропускание тока — форсунка закрылась. Для простоты давайте сначала примем, что форсунка открывается и закрывается моментально. Тогда для оценки объема проходящего через нее топлива нам достаточно знать ее статическую производительность. Это просто объем топлива, который пройдет через форсунку за минуту. Открыли форсунку, измерили объем бензина, который через нее за минуту вытек — получили основной параметр. Теперь нам для точного дозирования надо просто открывать и закрывать форсунку на определенное время. Получается что дозирование производится «выдержкой», если говорить терминами фотографов. Чем длиннее время на которое мы открываем форсунку, тем больше топлива мы нальем в двигатель.
А поджиг смеси осуществляет все та же бессменная свеча зажигания, которая верой и правдой служила для этой цели. И катушка зажигания тоже на месте. Вот только управляется она уже «мозгами». Зажигание не изменилось, но для его работы важен ДПКВ и ДПРВ, так что без этих датчиков дела не будет.

В общем то это, можно считать, и есть в общих чертах как работает инжектор. Смотрим на показания датчиков, отмеряем нужное количество топлива и открываем форсунку на вычисленное время. И так каждый такт. Т.е. в зависимости от частоты — 100 раз в секунду на частоте в 6000об/мин коленвала. Часто? Да не так чтобы и очень.

Идем дальше?

В реальных двигателях все несколько сложнее. Точно вычислить сколько же воздуха попадает в двигатель не так просто. Для корректировки значений нужны датчики температуры охлаждающей жидкости — просто термодатчик, аналогичный тому, что показывает температуру на приборной панели. И датчик температуры поступающего воздуха. В целом незначительно отличающийся от первого, а функционально и вовсе его брат близнец — тоже просто измеряет температуру, но уже не двигателя, а воздуха, поступающего в двигатель. Зачем нам что-то корректировать? Дело в том, что пока двигатель холодный, пока он не нагреется до определенной температуры — топливо испаряется не так хорошо, а горят именно пары. Соответственно нам нужно топлива подавать больше, чтобы двигатель работал. Значит берем наше значение для оптимального соотношения, измеряем двигателю температуру и корректируем это наше значение. Также нужно откорректировать момент зажигания смеси в цилиндрах — по тем же причинам. И тут тоже корректируем.

Другой не совсем приятный момент — форсунка, которую мы приняли идеальной — на самом деле таковой не является. Во первых нужно время, чтобы она открылась, а потом закрылась. Соответственно в этом время она тоже подает топливо, но в меньшем количестве. На это тоже делается поправка. Само время открытия и закрытия зависит от напряжения бортовой сети. Одно дело когда генератор шпарит на всю и в сети 14В, а другое дело, когда генератор умер, а аккумулятор разряжен до неприличных 10В. Время открытия форсунки меняется и его надо корректировать. Мало умершего генератора, ехать то надо и двигатель не должен перестать работать в таких условиях.

Мало нам было исполнительных механизмов, для работы на холостом ходу, когда педаль мы совсем не трогаем — двигатель не должен глохнуть, его работу надо поддерживать. Для этого есть специальное исполнительное устройство — РХХрегулятор холостого хода. Это такой шаговый двигатель (реже просто электромагнит), который через специальный канал дает двигателю «вздохнуть» мимо перекрывающей воздух дроссельной заслонки. Умный мозг не дает двигателю зачахнуть и приоткрывает этот клапан, когда обороты снижаются. Но и разойтись не дает — прикрывает его, когда обороты возрастают уж слишком сильно.

Хорошо бы нам также знать на сколько сильно водитель давит на педаль акселератора. Для этих целей смотрят не на положение педали, а на положение заслонки, которой эта педаль управляет. Датчик так и называется — ДПДЗдатчик положения дроссельной заслонки. Технически это просто потенциометр, который измеряет на какой угол повернута ось дроссельной заслонки. Это зачем это нам надо знать, как сильно водитель давит в пол, спросите вы? Все просто, нам надо знать когда включать режим холостого хода (помним про РХХ), когда водитель жаждет острых ощущений и энергично давит на педаль — не время экономить, льем от души!

Экологические нормы достаточно строго контролируют что же «выдыхает» (пускай уж выдыхает) наш двигатель. Так что при всем желании лить «на глазок» — нельзя. нужно контролировать состав выхлопных газов. Как это сделать? Для этой цели есть так называемый лямбда зонд или датчик кислорода — датчик, показывающий сгорела ли смесь целиком, есть ли в выхлопных газах топливо либо же свободный кислород. По показаниям этого датчика инжектор может корректировать свое поведение, либо увеличивая либо уменьшая количество подаваемого топлива. Нужно это достаточно часто — бензин везде разный и даже просто хранясь в канистре или баке — стареет. А уж о заправках наших можно легенды слагать. Соответственно и режимы его горения совсем не постоянны. Ко всему прочему и производительность форсунок может «плавать». Ведь как вы поняли — расчет ведется исходя из их постоянной производительности, а форсунка со временем может забиться, производительность ее может снизиться.
А нормы строгие, а бензин дорогой, да и ехать же надо. Внимательный читатель заметил, что одного этого датчика достаточно для обеспечения обратной связи. Смотрим на состав выхлопных газов, если сгорело не все — льем меньше. Если сгорело дочиста — льем больше.
Лямбда зонды бывают двух видов — узкополосные и широкополосные. Отличаются они точностью. Первые только показывают богатая или бедная у нас смесь, вторые показывают на сколько она богатая или бедная. Даже точно указывают тот самый AFR упоминаемый в начале статьи. Ну и цена, конечно. Первые стоят 25$, вторые — 200$. С лямбдами тоже не все просто — они достаточно капризны, требуют определенной температуры для работы, а это не всегда возможно, в некоторых типах зондов рабочий элемент специально подогревают от бортовой сети. Да, лямбда может быть не одна, но это уже тонкости.

Еще один сенсор, применяемый для анализа происходящего в двигателе — датчик детонации. Детонация это процесс сгорания топлива, который протекает взрывообразно. В нормальном режиме топливо просто сгорает, при детонации топливо взрывается. Это вредно для двигателя — все равно что бить по поршню молотком. Никто не любит когда по нему бьют молотком — поршень не исключение. Явление это крайне нежелательное и для определения того, что смесь детонирует и применяют такой датчик. Он по принципу работы похож на микрофон, который «слушает» двигатель (датчик закреплен на блоке цилиндров) и по услышанному пытается отфильтровать шум работы двигателя и понять где же детонация, а где нормальная работа. Все не просто и здесь. Для облегчения работы этого датчика ставят еще датчик неровной дороги, который покажет, что это наши дороги так шумят, а не двигатель. Востребованность этого датчика возрастает на турбированых двигателях.

В итоге сами по себе мозги работают примерно следующим образом:
Есть так называемая топливная карта — таблица, в которой записано какого состава должна быть смесь. У таблицы три измерения — частота вращения коленвала двигателя, нагрузка на двигатель и собственно AFR. Просто берем из таблицы значение, положенное туда опытным товарищем.
Корректируем это значение в соответствии с показаниями датчиков температур, лямбда зонда, датчика детонации, изменением положения дроссельной заслонки и в соответствии со всеми этими поправками (часть из них тоже в табличках) вычисляем необходимое количество топлива. Пересчитываем объем топлива во время открытия форсунки в соответствии с ее производительностью, корректируем время в соответствии с напряжением бортовой сети и в момент впуска — открываем форсунку на вычисленное время.

Как видите — ничего сложного и заумного здесь нет. Просто таблицы, может быть местами ПИД регулятор, коэффициенты влияния тех или иных факторов и в итоге просто время открытия форсунки.
С зажиганием тоже самое, только там карта углов, аналогичная топливной карте (тоже таблица) и тоже корректировки в соответствии с показаниями датчиков.

В штатном режиме все работает, но что делать, если один из датчиков вышел из строя? И как это понять? Если датчик температуры, например, показывает что двигатель нагрет до 200 градусов, или что смесь детонирует несмотря на все корректировки? В этом и заключается продуманность мозгов. Вычислить, что датчик врет, не принимать во внимание его показания, зажечь «check engine» на панели и продолжить работу. Благодаря такому поведению двигатель сохранит работоспособность при выходе из строя некоторых датчиков (не всех, как вы понимаете) и позволит доехать до СТО.

Да, многие из вас заметят, что инжектор по сути достаточно простое устройство. И схематически там нет ничего военного — входящие значения считываются по АЦП, выходящие так и вовсе чисто бинарные. Ну выходные транзисторы, ну достаточно жесткие условия работы. Но это не космос далеко.
Касательно работы прошивки — тоже вроде как все не так и сложно. На мой взгляд проще всяких алгоритмов распознавания изображений и всякое такое. В процессе настройки саму прошивку никто не трогает обычно. В том смысле, что открывать исходники, корректировать алгоритмы, оптимизировать что-то — такого нет. Просто софт который позволяет изменять те самые топливные карты и другие коэффициенты. А прошивками занимаются уже инженеры на заводах. Или простые смертные, которым это интересно.
Да да, не каждый готов платить за «мозги» космические деньги, а кому-то может быть просто хочется больше контроля над происходящим. Все это привело к тому, что есть несколько проектов вполне доступных «мозгов». Есть megasquirt — www.megamanual.com/index.html, для этой аппаратной базы в последствии была написана и поддерживается кастомная прошивка с расширенным функционалом — msextra.com/doc/index.html На последнем сайте есть даже схемы этих «мозгов», может быть кому-то из электронщиков будет интересно. А программистам может быть интересно глянуть на код. Если не ошибаюсь, то он есть здесь. msextra.com/doc/ms2extra/files/release/ms2extra_3.2.1_release.zip
Есть еще VEMS — www.vems.hu/wiki который сначала назывался megasquirtAVR, но теперь сам по себе. Видел еще вот таких ребят — forum.diyefi.org там у них какой-то свой проект FreeEMS. На мой взгляд все это показывает, что все не так уж сложно и местами даже очень даже доступно.

Надеюсь получилось достаточно интересно и в меру понятно. Об опечатках прошу писать в личку. Если где ошибся — поправьте.

habr.com

Инжекторная система питания

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Устройство ДВС

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

autoleek.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML.