Ключ к знанию

Как сделать датчик холла своими руками


Левитрон на датчике Холла своими руками

Доброго времени суток, уважаемые самоделкины.
В этой статье Константин, мастерская How-todo, покажет нам как сделать левитрон.

Итак, левитрон. Принцип работы данной приблуды прост, как саморез. Электромагнитом поднимаем в воздух кусочек некоего магнитного материала. Для создания эффекта парения, электромагнит включаем и выключаем с большой частотой.

То-есть, как-бы поднимаем и бросаем магнитный образец.

Схема такого устройства на удивление проста, и повторить его не составляет сложностей. Вот, собственно, схема.


Нужные нам материалы и компоненты.

Светодиод любого цвета, он не обязателен.
Транзистор IRFZ44N, подойдет практически любой похожий по параметрам полевик.
Диод, здесь автор использует HER207, с тем же успехом будет работать какой-нибудь 1N4007.
Резисторы на 1 кОм и 330Ом (последний не обязателен).

Датчик холла, у меня это A3144 его тоже можно заменить на похожий.
Медный намоточный эмалированный провод диаметром 0,3 0,4 мм, метров 20. У автора провод 0,36 мм.


Неодимовый магнитик типа таблетки, размером 5 на 1 мм, тоже не особо принципиально, в пределах разумного.

В качестве источника питания подойдет ненужный пятивольтовый зарядник от телефона.

Клей, бумага, паяльник припой... стандартный набор паяльщика.

Кстати, список всех компонентов с ссылками на aliexpress.

Давайте перейдем к сборке. Для начала необходимо сделать картонную катушку для корпуса будущего электромагнита.
Параметры катушки следующие:
6 мм диаметр внутренней втулки, ширина слоя намотки приблизительно 23 мм и диаметр щечек, с запасом, около 25 мм.


Как видите, Константин соорудил корпус для катушки из картонки и обрезка тетрадного листа, хорошенько смазав их суперклеем.
Закрепим начало провода в каркасе, наберемся терпения и начинаем накручивать примерно 550 витков.

Направление намотки не имеет значения. Можно даже намотать в навал, но это не наш метод.

Наматываем 12 слоев, виток к витку, изолируя каждый слой изолентой.

Потратив часа полтора, закрепляем конец провода и откладываем катушку.

Приступаем к пайке, все согласно схемы, без каких-либо отличий.

Выводы Датчика Холла удлинняем проводками и изолируем термоусадкой, ведь его необходимо расположить внутри катушки.


Собственно все, остается только настроить, для этого устанавливаем датчик Холла внутри катушки и фиксируем подручными средствами.

Подвешиваем катушку, подаём питание.

Поднеся магнит чувствуем, что он притягивается или отталкивается, в зависимости от полярности.
На некотором расстоянии магнит пытается зависнуть, но на длительное время не зависает.

Изучаем документацию на датчик, где специально в картинках показано, с какой стороны у него чувствительная зона.

Вынимаем его и сгибаем таким образом, чтобы плоская сторона с надписями оказалась в итоге параллельно земле.

Запихиваем обратно, на этот раз все значительно лучше.

Но до сих пор не парит.

Проблема заключается в форме магнита, а именно - плоская форма "таблетки".
Не самая удачная, которую можно придумать для левитации. Достаточно всего лишь сместить центр тяжести вниз. Организуем это при помощи куска толстой бумажки.

Кстати, перед приклеиванием противовеса, не забудьте сначала посмотреть с какой стороны магнит притягивается к катушке.

Собственного теперь все более-менее работает, остается только отцентровать и закрепить датчик.

Какие еще были особенности. Попытка питать устройство от 12В адаптера приводит к сильному нагреву электромагнита.
Пришлось перейти на 5В, при этом какого-то ухудшения работы замечено не было, а нагрев практически полностью был устранен.
Еще светодиод и его ограничительный резистор почти сразу был исключен из схемы, ибо смысла от них нет.
Финальный штрих, синий бумажный скотч показался недостаточно эстетичным.

Отодрав его, медный провод виток к витку выглядит значительно лучше.

Для своих поделок, левитрон первый в списке однозначно, по эффектности и простоте схемы он может потягаться с катушкой Тесла.
Для Вас левитрон изготовил и представил его принцип работы Константин, канал How-todo.


Всем хороших идей!
Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Самостоятельный ремонт датчика Холла | Каталог самоделок

Датчики Холла имеют очень простую конструкцию и поэтому редко ломаются. Но их нельзя назвать вечными. Иногда датчик может выдавать отказы, и в системе зажигания пропадает «искра».

Проверку работы устройства можно сделать своими силами. Центральный контакт датчика Холла замыкают на надежную «массу», после этого измеряют входящее напряжение тока (значения должны быть в пределах 9-10 В). Если напряжение присутствует, и другие детали работаю в штатном режиме, то причина «искры» кроется в неисправности датчика.

В случае неисправности элемент требует скорейшей замены. Однако цена детали в магазине сильно ударит по кошельку. Поэтому можно попытаться провести самостоятельный ремонт датчика Холла.

Работы будут проводиться на примере автомобиля марки Фольксваген. Иномарка имеет стандартный примитивный датчик Холла. Процесс ремонта очень прост: необходимо только заменить логический элемент S 441 А.

Переда началом ремонта логический элемент проверяют на работоспособность. Для этого достаточно последовательно соединить светодиод и резистор (1 или 2 кОм), эту конструкцию прикрепляют к контактам «плюс» и «выход». Напряжение электрического тока должно быть от 3 до 30 В. Исправность S 441 А проверяют с помощью магнита: должен срабатывать светодиод.

В центре корпуса датчика Холла дрелью нужно высверлить небольшое отверстие. Необходимо хорошее сверло, так как пластмассовый корпус детали укреплен изнутри металлическим каркасом.

Ножом нужно «заподлицо» срезать каждый провод, а потом проложить надфилем канавки от высверленного отверстия к остаткам проводов. Измерительный элемент устанавливают в окошко корпуса и проверяют его работу с помощью магнита. Если схема не работает, то в первую очередь стоит проверить полярность установки элементов.

Пробник нужно отпаять и сделать разводку выводов по канавкам корпуса. В окошке должны остаться только провода для соединительного разъема старого датчика. При проведении работ важно соблюдать последовательность подключения и маркировку проводов (символы «+», «–» или «0» можно найти на разъеме трамблера).

После пайки с помощью тестера и визуального осмотра нужно убедиться в исправности механизма. Если нет никаких проблем, то можно герметизировать отверстие клеем или специальным составом. Специалисты не рекомендуют использовать пластмассу, так как высокие температуры могут ее деформировать. Некоторые мастера предпочитают пользоваться для таких работ «холодной сваркой».

Финальный этап работ – это сборка датчика. Все действия осуществляются последовательно, но в обратном порядке.

Такой ремонт очень прост и не потребует специальных знаний. Он подходит также для автомобилей AUDI, Daewoo, Mittsubishi и других иномарок.

volt-index.ru

принцип работы, применение, принципиальная схема, подключение

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер положения клапанов

Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).

Так можно фиксировать открывание и закрывание клапанов.

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0). Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает. По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

prodatchik.ru

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

www.asutpp.ru

Сообщества › Электронные Поделки › Блог › Применение датчиков Холла в клавиатуре

Привет всем! Чтоб снять сигнал нажатия клавиши, датчики Холла совсем не обязательны — сколько придумано всяких микропереключателей, кнопок, пленочной контактуры, вплоть до сенсоров…Но, если требуется не изменить даже самую малость тактильного характера клавиши, как хирурги говорят — пальпация это великая вещь, в знающих руках )), то заманчивы остаются лишь два пути. Это применение щелевых оптронов и магнитоуправляемых микросхем, тех самых, где трудится эффект Холла. Я посмотрел — в моем случае ( это электромузыкальный инструмент ) на оптронах получается дороговато, выписал с АЛИэкспресса вот такие неодимовые магнитики и микросхемы ОН 3144, их и называю датчиками Холла, Магнитики — диаметром 5 мм.

Полный размер


Эти датчики имеют выход по типу открытого коллектора, как и герконы имеют гистерезис по захвату магнита ( захватят при 5 мм расстояния, а отпустят при 8 мм ). Но, в отличие от геркона нет дребезга выхода и нечему ломаться. Выходом управляет внутренний триггер, поэтому фронты сигнала великолепны — можно обрабатывать простыми IF на процессоре ( если на ножке НОЛЬ, то сделать то-то …), Вот схемка использования :

Полный размер


Нюанс: лицо датчика нужно располагать к "Зюйду" магнита, поэтому пары надо подбирать и метить фломастером "Зюйд" на магнитиках. Захват ловится и просто приближением, и боковым наездом. У меня можно было зайти к коромыслам клавиатуры только боковым наездом, поэтому удлинял датчики стойками, магниты приклеивал "супермоментом",

Полный размер


Одиночный ряд получается без проблем ( друг другу не мешают ), А два ряда в параллель создают общее магнитное поле со своими узлами усиления и ослабления, поэтому нужна подстройка некоторых датчиков. Нет захвата — подгибал датчик поближе к магниту, не отпускает захват — подгибал подальше от магнита или нарушал угол подхода магнитика для ослабления. Но все работает — стабильность внутренних триггеров позволяет поиграть с захватом. Вот общий вид датчиков:

Полный размер


Может быть, для кого-то пригодится опыт использования ОН 3144, Не панацея, конечно, — липнет все металлическое, только пластмассовый корпус, Рядом с плоскошлифовальным станком на этой гармошке не поиграешь :-) Ну а у оптронов другая фобия — пыль, поэтому и написал о датчиках Холла.
Всем добра и послушных клавиатур.

www.drive2.ru

Магнитоуправляемые микросхемы | Все своими руками

Опубликовал admin | Дата 24 августа, 2013

     Ни когда не задумывался о принципе работы вентиляторов, применяемых в компьютерной и офисной технике. Но тут неожиданно сдох один из таких (Фото 1).

     Пришлось произвести вскрытие (Фото 2). И здесь обнаружилась микросхема, управляемая магнитным полем – датчик Холла. Стал искать информацию о принципе работы таких вентиляторов и нашел в журнале «Радио» за 2001 год №12 стр. 33. Статья называется «Ремонт вентиляторов электронных устройств». В моем вентиляторе стояла другая микросхема (Фото 2 ,3). Эта микросхема имеет два инверсных относительно друг друга выхода, которые меняют свое состояние на противоположное при приближении магнита и восстанавливают свое состояние, когда магнит убирают. Так, как у меня этих вентиляторов б\у много, я нашел в одном из них датчик Холла с тремя выводами (Фото 4). Эта микросхема работает немного по-другому. Изменить состояние выхода датчика можно изменением направления магнитного поля, т.е. при приближении магнита на выходе 2 микросхемы скачком появляется напряжение высокого уровня (логическая единица), при его удалении это напряжение остается, чтобы сбросить состояние выхода в «0» надо поднести магнит к датчику другим полюсом. Я провел небольшой эксперимент, взял магнит от устройства регулировки линейности строк телевизоров (Фото 5). Красной линией на фото показана нулевая плоскость между полюсами магнита. Краской помечен южный полюс магнита. Магнит закрепил гайками на шпильке, шпильку закрепил в патроне минидрели. Соединил соответствующим образом микросхему, к ее выходу подсоединил осциллограф. При приближении вращающегося магнита со скоростью 9000 об\мин на экране осциллографа наблюдались четкие прямоугольные импульсы.

     Достоинством таких микросхем, на мой взгляд, является еще и то, что изменяя напряжения питания этих микросхем их выход можно согласовывать с любым типом жесткой логики. На их основе можно сотворить датчики для различных устройств. Надо только подумать, информация к размышлению есть. До свидания. К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:12 626


www.kondratev-v.ru

Зажигание с одним двухсигнальным датчиком ХОЛЛА — УАЗ 31512, 2.5 л., 1988 года на DRIVE2

В зажигании, используется две волговские катушки, два комутатора и один датчик холла от компьютерного куллера, а так же магнит от него же. Все проверено, все работает, в том числе и в воде. плату сам сделал. магнит использовал от куллера, просто обламив лопасти и просверлив отверстие. работает все просто: если в трамблере с двумя датчиками вращается шторка, то здесь вращается магнит в виде кольца, а датчик ХОЛЛА считывает полярность магнита и подает сигнал на коммутаторы. вроде все описал. ах да, зажигание работает хорошо. лично у меня стал лучше тянуть на низах, двигатель работает ровнее, не боится воды. плюсы именно такой схемы в том, что не нужно выставлять два датчика, делать шторки, (говорят что датчик ХОЛЛА из куллера надежней вазовского)

Самодельная плата с датчиком ХОЛЛА

плата с датчиком ХОЛЛА

плата на месте

хомуты крепления катушек

все в сборе

коммутаторы

магнит

плата на месте и дистанционная втулка для установки магнита

магнит с обломанными лопастями

трамблер в сборе без крышки

да и куллеры мне достались бесплатно)

www.drive2.ru

///Ремонт датчика хола/// — Audi V8, 3.6 л., 1989 года на DRIVE2

И так приступим!

Для проверки датчика вам необходимо обзавестись светодиодным тестером. Изготовить его можно следующим образом. Покупаем в магазине радиодеталей обычный светодиод и сопротивление 1 кОм. К ножке светодиода припаиваем сопротивление.

Для удобства припаяем к светодиоду и сопротивлению провода, длина на ваше усмотрение. После нужно заизолировать открытые части, чтобы при проверке случайно не замкнуть.

Теперь идем в гараж и приступим к проверке.
Датчик Холла на AUDI V8 находится в задней крышке распредвала, на правой головке по ходу движения автомобиля. Прежде чем приступить к проверке датчика, нам нужно удостовериться присутствует ли питание на нем. На датчик одет штекер, так вот у него мы закатываем резиновый чехол и видим клеммы, они там пронумерованы, но могут быть не пронумерованы.
Включаем зажигание и встаем мультиметром на клеммы 1-3 (крайние клеммы). Прибор должен показать не меньше 5 вольт.

Теперь берем наш светодиодный тестер и встаем на эти же клеммы. Если мы угадали полярность, то светодиод должен гореть. Если не угадали, то ничего страшного просто поменяйте концы местами. Провод на клемме 1 оставляем, а с клеммы 3 пересаживаем на 2 клемму, проворачиваем распредвал. Это можно сделать, вручную или стартером (или просто завести машину) . Если мы будим крутить двигатель стартером, то светодиод должен моргать, это говорит об исправности датчика Холла.

Если вы сняли датчик Холла, то в исправности его можно убедиться и следующим способом. На снятом датчике мы подцепляем штекер. Также встаем светодиодным индикатором на клеммы 1 – 2. Включаем зажигание. Светодиод у нас должен гореть.
Если мы вставим что-нибудь, например нож между катушкой и магнитом, то светодиод у нас погаснет. Это также свидетельствует об исправности датчика, в ином случае датчик Холла не исправен.

Выход из строя датчика Холла это редкость на автомобиле Audi V8. Когда у вас внезапно перестал заводиться двигатель или стал дико троить, первым делом нужно обратить внимание именно на этот датчик.

Принцип работы датчика хола кому интересно описывается вот здесь:

Самое распространенное повреждение датчика это отрыв клеммы от гнезда посадочного и обрез проводов датчика хола бегунком… как произошло у меня!

P.S. где то слышал что датчик хола подходит от ВАЗ -2108-09! При всем желание будет не очень просто его туда приспособить!
Первая и главная причина то, что он слишком широкий и высокий в последствие чего бегунок будет тереть магнит, что приведет к повреждению датчика.

Реально подходит от какого то гольфа…

А моя проблема решилась простым спаиванием проводов, датчик исправен! Пришлось немного поколхозить что бы провода больше не оборвались ну и в итоге получилось вот так:

Прижав этот провод к трамлеру обмотал его залентой что бы не мешался!((( Колхозно, но работает…

www.drive2.ru

Как сделать левитрон на датчике холла своими руками

Левитрон на датчике холла

Левитроном, как известно, называют волчок, вращающийся в воздухе над коробкой, в которой действует источник магнитного поля. Изготовить левитрон можно из популярного датчика холла.

Что такое левитрон

Левитрон – это игрушка. Ее нет никакого смысла покупать, если знать варианты изготовления самодельного устройства. Ничего сложного в конструкции такого левитрона не будет, если имеется обычный датчик холла, например, купленный для автомобильного трамблера, и оставленный впрок.

Графическая схема функционирования датчика

Следует знать, что эффект левитации наблюдается всегда в достаточно узкой зоне. Такие реалии несколько ограничивают свободу действий умельцев, однако при приложении терпения и времени, можно всегда настроить левитрон качественно и эффективно. Он практически не будет падать или скакать.

Левитрон из датчика холла

Левитрон на датчик холла и идея его изготовления проста, как и все гениальное. Благодаря силе магнитного поля в воздух поднимается кусок любого материала с электромагнитными свойствами.

Левитатор

Чтобы создался эффект «зависания», парения в воздухе, подключение осуществляется с большой частотой. Другими словами, магнитное поле, как бы, поднимает и бросает материал.

Схема устройства чересчур проста, и даже школьник, не просидевший уроки физики зря, сможет все самостоятельно соорудить.

  1. Нужен светодиод (цвет его подбирается в зависимости от индивидуальных предпочтений).
  2. Транзисторы RFZ 44N (хотя подойдет любой полевик, близкий к этим параметрам).
  3. Диод 1N 4007.
  4. Резисторы на 1 кОм и 330 Ом.
  5. Собственно, сам датчик холла (А3144 или другой).
  6. Медный намоточный провод размером 0,3-0,4 мм (около 20 метров будет достаточно).
  7. Неодимовый магнитик в виде таблетки 5х1 мм.
  8. 5-вольтный зарядочник, предназначенный для мобильника.

Теперь подробно о том, как проводится сборка:

  • Делается каркас для электромагнита точно с такими же параметрами, как на фото. 6 мм – диаметр, около 23 мм – длина намотки, 25 мм – диаметр щечек с запасом. Изготавливается каркас из картонки и обычного тетрадного листа, с использованием суперклея.

Каркас для электромагнита

  • Конец медного провода фиксируется на катушке, а затем проводится наматывание (примерно 550 витков). Неважно при этом в какую сторону наматывать. Другой конец провода тоже закрепляется, катушка пока откладывается в сторону.
  • Паяем все по схеме.

Схема левитрон на ДХ

  • Датчик холла припаивается на проводки, а затем ставится на катушку. Надо вдеть его внутрь катушки, зафиксировать подручными средствами.

Внимание. Чувствительная зона датчика (определить ее можно по документации к датчику холла) должна смотреть параллельно земле. Поэтому, перед тем как вдеть датчик в катушку, рекомендуется немного согнуть это место.

Датчик холла на катушку

  • Катушка подвешивается, на нее подается питание через спаянную ранее плату. Катушка фиксируется посредством штатива.

Закрепленная в штатив катушка

Теперь можно проверить, как работает левитрон. Можно подвести к катушке снизу любой наэлектризованный материал. Он будет либо притягиваться катушкой, либо отталкиваться, в зависимости от полярности. Но нам нужно, чтобы материал зависал в воздухе, парил. Так оно и будет, если форма материала не слишком мала по отношению к катушке.

Примечание. Если магнит в виде таблетки маленький, то он будет левитировать не слишком эффектно. Может падать. Чтобы исключить огрехи в работе, надо сместить центр тяжести материала к низу – в качестве груза подойдет обычный кусок бумажки.

Что касается светодиода, то его можно и не ставить. С другой стороны, если хочется большего эффекта, можно организовать шоу с подсветкой.

Самодельный левитрон в классическом исполнении без датчика

Как видим, благодаря наличию датчика холла удалось изготовить вполне эффектную игрушку. Однако это вовсе не означает, что без датчика не обходится. Напротив, самодельный левитрон в классическом исполнении, это лишь большой магнит от динамика (диаметром 13-15 см) и маленький кольцевой магнит для волчка (2-3 см в диаметре), без использования датчика.

Ось волчка делается, как правило, из старой ручки или карандаша. Главное – стержень подбирается так, чтобы плотно заходил по центру кольцевого магнита. Лишняя часть ручки после этого срезается (примерно 10 см в длину вместе с закрепленным магнитом для волчка, то что надо).

Классическая схема изготовления левитрона подразумевает также наличие десятка различных шайб, вырезанных из плотной бумаги. Для чего они понадобятся? Если в вышеописанном случае тоже использовалась бумага, и как мы помним – для смещения центра тяжести вниз или проще, для настройки. То же самое и здесь. Шайбочки буду нужны для идеальной настройки волчка (при необходимости сажаются после кольцевого магнита на стержень).

Вырезание шайб из бумаги

Внимание. Чтобы самодельный волчок идеально левитировал, помимо настройки шайбочками, нужно не ошибиться с полярностью. Другими словами, установить кольцевой магнит соосно большому магниту.

Левитация волчка над большим магнитом

Но и это еще не все. Как в первом случае (с использованием датчика холла), так и во втором, надо добиться идеальной ровности источника притяжения. Говоря иначе, поставить большой магнит на идеально ровную поверхность. Чтобы добиться этого, применяются деревянные подставки различной толщины. Если магнит сидит не ровно, подставки ставятся с одной стороны или с нескольких, таким образом, настраивается ровность.

Платформенные левитроны

Отличается платформенная схема левитрона, как правило, наличием не одного, а нескольких магнитов-источников. Парящий в воздухе материал или волчок будет стремиться в этом случае упасть на один из магнитов, сместившись с вертикальной оси. Чтобы этого избежать, надо суметь скорректировать центральную зону притяжения, и сделать это идеально точно.

И тут на помощь приходят те самые катушки, с вдетым внутрь датчиком холла. Пусть таких катушек будет две, и расположить их следует ровно по середине платформы, между магнитами. На схеме это будет выглядеть вот так (1 и 2 — магниты).

Схема платформенного левитрона

Из схемы становится понятно, что целью управления катушками является создание горизонтальной силы, центра притяжения. Сила эта формально названа Fss, и направлена она к оси равновесия при возникновении смещения, указанного на схеме, как Х.

Если подключить катушки так, чтобы импульс создавал зону с обратной полярностью, то можно решить вопрос со смещением. Это подтвердит любой физик.

В качестве корпуса для конструкции платформенного левитрона подбирается любой старый проигрыватель ДВД. Из него снимаются все «внутренности», устанавливаются магниты и катушки, а в целях красоты, верхняя часть закрывается практичной крышкой из тонкого, можно прозрачного материала (пропускающего магнитное поле).

Датчики холла должны выступать через отверстия платформы, должны быть распаяны на разогнутых ножках разъемов.

Что касается магнитов, то это могут быть круглые элементы толщиной в 4 мм. Желательно, чтобы один из магнитов был больше второго по диаметру. Например, 25 и 30 мм.

Существуют и более сложные варианты левитронов, изготовленные по схеме раскручивания волчка, находящегося внутри небольшого глобуса. Эти левитроны также могут строиться с использованием датчиков холла – эффективных составляющих, совершивших целую революцию в автопромышленности и других сферах человеческой деятельности.

ozapuske.ru

Датчик Холла | Виды, принцип работы, как проверить

Что такое датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage – напряжение питания датчика

Ground – земля

Voltage Regulator – регулятор напряжения

А – операционный усилитель

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

www.ruselectronic.com


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML.