Сетевой коммутатор на 52 порта (включая 4 оптических комбо-порта) 24-портовый сетевой коммутатор
Сетевой коммутатор (жарг. свитч, свич от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор работает на канальном (втором) уровне модели OSI. Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы (3 уровень OSI).
В отличие от концентратора (1 уровень OSI), который распространяет трафик от одного подключённого устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю (исключение составляет широковещательный трафик всем узлам сети и трафик для устройств, для которых неизвестен исходящий порт коммутатора). Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.
Далее в этой статье рассматриваются исключительно коммутаторы для технологии Ethernet.
Коммутатор хранит в памяти (т.н. ассоциативной памяти) таблицу коммутации, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует фреймы (кадры) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу на некоторое время. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты, за исключением того порта, с которого он был получен. Со временем коммутатор строит таблицу для всех активных MAC-адресов, в результате трафик локализуется.
Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.
Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.
С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.
Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.
Бесфрагментный (fragment-free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (первые 64 байта кадра анализируются на наличие ошибки и при её отсутствии кадр обрабатывается в сквозном режиме).
Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.
Симметричная и асимметричная коммутация[править | править код]
Свойство симметрии при коммутации позволяет дать характеристику коммутатора с точки зрения ширины полосы пропускания для каждого его порта. Симметричный коммутатор обеспечивает коммутируемые соединения между портами с одинаковой шириной полосы пропускания, например, когда все порты имеют ширину пропускания 10 Мбит/с или 100 Мбит/с.
Асимметричный коммутатор обеспечивает коммутируемые соединения между портами с различной шириной полосы пропускания, например, в случаях комбинации портов с шириной полосы пропускания 10 Мбит/с или 100 Мбит/с и 1000 Мбит/с.
Асимметричная коммутация используется в случае наличия больших сетевых потоков типа клиент-сервер, когда многочисленные пользователи обмениваются информацией с сервером одновременно, что требует большей ширины пропускания для того порта коммутатора, к которому подсоединён сервер, с целью предотвращения переполнения на этом порте. Для того, чтобы направить поток данных с порта 100 Мбит/с на порт 10 Мбит/с без опасности переполнения на последнем, асимметричный коммутатор должен иметь буфер памяти[источник не указан 881 день].
Асимметричный коммутатор также необходим для обеспечения большей ширины полосы пропускания каналов между коммутаторами, осуществляемых через вертикальные кросс-соединения, или каналов между сегментами магистрали.
Для временного хранения фреймов и последующей их отправки по нужному адресу коммутатор может использовать буферизацию. Буферизация может быть также использована в том случае, когда порт пункта назначения занят. Буфером называется область памяти, в которой коммутатор хранит передаваемые данные.
Буфер памяти может использовать два метода хранения и отправки фреймов: буферизация по портам и буферизация с общей памятью. При буферизации по портам пакеты хранятся в очередях (queue), которые связаны с отдельными входными портами. Пакет передаётся на выходной порт только тогда, когда все фреймы, находившиеся впереди него в очереди, были успешно переданы. При этом возможна ситуация, когда один фрейм задерживает всю очередь из-за занятости порта его пункта назначения. Эта задержка может происходить даже в том случае, когда остальные фреймы могут быть переданы на открытые порты их пунктов назначения.
При буферизации в общей памяти все фреймы хранятся в общем буфере памяти, который используется всеми портами коммутатора. Количество памяти, отводимой порту, определяется требуемым ему количеством. Такой метод называется динамическим распределением буферной памяти. После этого фреймы, находившиеся в буфере, динамически распределяются по выходным портам. Это позволяет получить фрейм на одном порте и отправить его с другого порта, не устанавливая его в очередь.
Коммутатор поддерживает карту портов, в которые требуется отправить фреймы. Очистка этой карты происходит только после того, как фрейм успешно отправлен.
Поскольку память буфера является общей, размер фрейма ограничивается всем размером буфера, а не долей, предназначенной для конкретного порта. Это означает, что крупные фреймы могут быть переданы с меньшими потерями, что особенно важно при асимметричной коммутации, то есть, когда порт с шириной полосы пропускания 100 Мбит/с должен отправлять пакеты на порт 10 Мбит/с.
Возможности и разновидности коммутаторов[править | править код]
Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые).
Более сложные коммутаторы позволяют управлять коммутацией на сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например «Layer 3 Switch» или сокращенно «L3 Switch». Управление коммутатором может осуществляться посредством Web-интерфейса, интерфейса командной строки (CLI), протокола SNMP, RMON и т. п.
Многие управляемые коммутаторы позволяют настраивать дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Многие коммутаторы уровня доступа обладают такими расширенными возможностями, как сегментация трафика между портами, контроль трафика на предмет штормов, обнаружение петель, ограничение количества изучаемых mac-адресов, ограничение входящей/исходящей скорости на портах, функции списков доступа и т. п.
Сложные коммутаторы можно объединять в одно логическое устройство — стек — с целью увеличения числа портов. Например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 90 ((4*24)-6=90) портами либо с 96 портами (если для стекирования используются специальные порты).
ru.wikipedia.org
Урок 14. Принцип работы сетевого коммутатора Ethernet
Сегодня мы поговорим о том, как все же работает коммутатор.
Как мы уже знаем коммутаторы являются L2 устройствами, так как работают на канальном уровне. Они обрабатывают заголовок Ethernet кадра, а точнее MAC адреса получателя и отправителя, а также контрольную сумму.
Каждый коммутатор составляет таблицу MAC адресов (CAM table) всех хостов, подключенных в его порты.
Каким же образом он составляет эту таблицу?
При включении питания коммутатора его таблица пуста.
Далее начинается процесс обучения, который представлен ниже
При поступлении каждого кадра на вход коммутатора, МАС адрес отправителя вносится в таблицу МАС адресов с указанием интерфейса, принявшего данный кадр.
Далее анализируется МАС адрес получателя. Если его нет в таблице, то коммутатор ретранслирует принятые кадры на все порты, кроме принявшего.
Если же МАС адрес получателя найден в таблице, то кадр направляется указанному в таблице интерфейсу.
Таблица адресов динамическая и сохраняется только в оперативной памяти, то есть при отключении питания таблица удаляется.
Все МАС адреса хранятся в таблице ограниченное время (aging-time), которое в некоторых коммутаторах можно изменить.
Почему нельзя сохранять адреса вечно?
Дело в том, что может понадобиться реконфигурация сети и некоторые хосты могут быть отключены от портов коммутатора, поэтому таблица адресов уже будет неактуальна, что приведет к неправильному функционированию сети.
Режимы коммутации
Коммутаторы могут работать в одном из 3-х режимов:
С промежуточным хранением (Store and forward). Коммутатор принимает кадр, затем проверяет на наличие ошибок. Если кадр не содержит ошибок, то коммутатор пересылает его получателю.
Сквозной (Cut-through). Коммутатор считывает МАС адрес получателя и сразу пересылает его получателю. Проверка на ошибки в данном режиме отсутствует.
Бесфрагментный (Fragment-free). Принимаются первые 64 байта, которые анализируются на наличие ошибок и коллизий, а затем кадр пересылается получателю.
В целом процесс коммутации происходит довольно быстро.
А с чем это связано?
Во-первых, сам процесс происходит на втором уровне (канальный уровень), что снижает время на обработку данных. Во-вторых, коммутация происходит не программно, а аппаратно. То есть для этого используются специализированные чипы ASIC.
А что это?
Это специальные микросхемы, которые разрабатываются для решения узкопрофильных задач. Кроме того, они отличаются быстротой работы.
Широковещательный домен и домен коллизий
Как мы знаем, благодаря коммутации, каждому хосту выделяется канал связи. В то время, как в концентраторе эта возможность отсутствует. То есть имеется общий канал для всех хостов, благодаря чему и возникают коллизии. Поэтому такое подключение или сеть (с общим каналом) называют доменом коллизий.
Как видно из рисунка в сети с концентратором в определенный момент времени может вести передачу только один компьютер. В то время как остальные ждут, когда он закончит. Такой режим связи называется полудуплексным (half duplex).
Ситуация усугубляется, когда в сети растет количество компьютеров, так как времени на передачу для каждого компьютера выделяется все меньше и меньше.
То есть, чем больше компьютеров и концентраторов, тем хуже?
Верно. Пропускная способность такой сети (домена коллизий) значительно снижается.
А как называется подключение с коммутатором?
Так как в коммутаторе коллизии в принципе исключены, то каждый его порт считается доменом коллизий. То есть в принципе, к порту можно подключить несколько хостов посредством концентратора, но пропускная способность при этом изменится только в рамках конкретного порта, к которому подключен концентратор. В сети с коммутаторами все хосты могут принимать и передавать данные одновременно, не мешая друг другу. Такой режим связи называется дуплексным (full duplex).
Сама же сеть, в которой присутствуют только коммутаторы называется широковещательным доменом, так как коммутаторы обрабатывают и пропускают широковещательный (broadcast) трафик.
Что такое широковещательный (broadcast) трафик?
Это когда в качестве получателя указывается адрес, говорящий, что данный пакет/кадр предназначен всем хостам.
Как выглядит такой адрес?
В МАС адресе устанавливаются все единицы, то есть FF.FF.FF.FF.FF.
Как называется обычный трафик, когда в качестве получателя указывается конкретный получатель?
Такой трафик называется одноадресатный (unicast).
Маршрутизаторы широковещательный трафик не пропускают, поэтому каждый порт маршрутизатора образует широковещательный домен.
Комментарии для сайта Cackle
easy-network.ru
Коммутатор (switch) - что это такое, принцип работы и как выглядит?
Привет, дорогой товарищ! Сетевой путь привел тебя к магистру знаний, который без зазрения совести поделится тайнами сетевой магии. Ни слова более, ибо сегодня я поведаю тебе – что такое свитч или коммутатор. Это нехитрое устройство может называться по-разному: network switch, switching hub, bridging hub или самое распространенное название коммутатор. Начнем с определения.
Коммутатор – это устройство, предназначенное подключать несколько сетевых машин: компьютеров, ноутбуков, серверов, сетевых принтеров или даже самих коммутаторов. Имеет вид коробки с большим количеством сетевых LAN портов. Подобные порты ты уже видел на компьютере или ноутбуке. Для подключения чаще всего используют витую пару, но бывают случаи с коаксиальным кабелем или оптоволокном.
В чем отличие коммутатора и свича? Никакой разницы и определенных различий нет. Слово «Switch» — это просто англоязычное название.
Вот так примерно выглядит Коммутатор
Принцип работы коммутатора на примере
Вот у нас есть коммутатор или свитч с большим количеством портов – например, их 5. Ко всем 5 портам подключены компьютеры. Отлично, у нас образовалась локальная сеть. Принцип работы свитча в том, что он грамотно распределяет пакеты информации по таблице коммутации, где хранятся MAC адреса всех подключенных устройств. Пока не понятно? – дальше разберем поподробнее.
Правда изначально эта таблица полностью пустая. Давайте рассмотрим, как работает коммутатор на примере:
1-ый компьютер отправляет пакет информации 5-му компу.
Пакет доходит до коммутатора;
Коммутатор смотрит в свою таблицу и видит, что она полностью пустая. Оно и понятно, его только включили;
Тогда коммутатор решает вопрос гениально – он отправляет данный пакет всем компьютерам, подключенным к портам. Но отправляет не просто так, а с запросом, чтобы ему пришел ответ от нужного устройства.
Все компьютеры принимают пакет и смотрят на адрес получателя. В итоге ответ приходит только от 5 компьютера, которому и отправлялся пакет.
Коммутатор смотрит, с какого порта пришел ответ. И записывает в таблицу коммутации к какому порту подключен 5 компьютер. В запись входит – номер порта и MAC-адрес устройства.
А теперь давайте подумаем – а для чего нужна эта таблица коммутации. Она как раз нужна для того, чтобы коммутатор при работе сети отправлял пакет только нужному адресату, а не всем сегментам сети. Как в прошлом примере, после того как коммутатор записал адрес 5-ой машины, в следующий раз он будет отправлять пакет не всем устройствам, а только на определенный порт, к которому подключен нужный комп.
Ну и главный вопрос: а для чего он нужен? Да в принципе только для соединения большого количества устройства в одну локальную сеть. Часто применяют на предприятиях. Например, у нас есть огромное количество отделов: бухгалтерия, отдел кадров, отдел безопасности, юристы. У каждого сотрудника есть свой компьютер. Чтобы соединить все эти устройства в одну сеть и используют свитч. Для коннекта могут использовать разные кабели и порты:
Отличие от концентратора
Теперь вы знаете – что такое свитч, но его очень часто путают с маршрутизатором и концентратором. Поэтому нужно разобрать и эти понятия.
Концентратор (или ХАБ по-другому) – это чем-то похожее устройство на коммутатор, но есть небольшое отличие. А отличие как раз в принципе работы. Hub при получении пакета информации отправляет этот же пакет всем сегментам сети и делает это постоянно. То есть, например, в сети идет связь 2 компьютеров и они активно отправляют друг-другу пакеты.
Но также одновременно концентратор отправляет или дублирует пакеты данных всем остальным подключенным устройствам. Проблема такого подключения в том, что в сети создается мусорный и ненужный трафик, что может привести к перегрузке сети и потери пакетов, если устройств будет слишком много. Тогда пакеты начнут теряться из-за недостаточной ширины канала.
Вот представьте, если бы вам постоянно приходили письма всех соседей вашего дома. У вас бы не хватило времени читать все письма. А работники почтовой службы сбились бы с ног.
В данный момент Хабы уже почти не используются. Хотя возможно их можно встретить в древних локальных сетях. Также минусом данного подключения является маломерность – то есть большое количество устройств вы просто не подключите.
Разновидности
Коммутаторы бывают нескольких видов:
Управляемые или программируемые – у таких устройств внутри также заложена система настроек портов. В такой системе системный администратор или инженер может назначить гибкую работу сети. Например, с помощью коммутатора можно разделить все подключённые устройства на разные подсети, чтобы пакеты информации были только в одной подсети и не выходили за её пределы. Например, в организации есть обычные менеджеры и бухгалтерия – и с помощью коммутатора их можно разделить. Чтобы доступ к документам имел только свой отдел.
Неуправляемые – это обычные аппараты, работающие по простому принципу, который я описал выше. Проблема таких устройств в том, что они не имеют четкого ограничения и при желании все устройства имеют доступ к друг-другу. Подобные свичи можно использовать внутри определенной подсети или в маленьких офисах. Часто используют дома, так как сегментов не так много.
Ещё коммутаторы могут различаться по уровню, на котором они работают по модели OSI. Данную модель должен знать каждый уважающий себя IT инженер или системный администратор. Но на всякий случай приведу удобную табличку.
2 уровня – работает с получением кадров и MAC-адресами. Не работают с IP адресами и понимают информацию вида: MAC-адрес и приоритетный тег (IEEE 802.1p).
3 уровня – работает со всеми видами IP (IPv4, IPv6, IPX, IPSec), также может работать с защитой трафика на подобном уровне. Можно также называть и маршрутизатором, так как данный аппарат может работать с протоколами: PPPTP, PPPoE, VPN и т.д.
4 уровень – более высокий уровень адресации, который можно настроить не только между устройствами, но и при использовании определенных приложений. Работает также со всеми другими уровнями: 2 и 3.
Отличие от маршрутизатора
Маршрутизатор или роутер – работает примерно так же как и коммутатор, но при этом в своем арсенале имеет полноценную операционную систему. За счет этого маршрутизатор имеет более гибкую систему настройки сети, также у маршрутизатора есть возможность раздавать сетевые настройки подключенным сегментам (по-другому функция DHCP).
Роутер имеет возможность фильтровать трафик, настраивать пропускную способность, а также работать с внешней глобальной сетью – интернет. В таком случае маршрутизатор выступает как управляемый шлюз между двумя сетями. При этом аппарат будет иметь два IP адреса:
Внешний – обычно выдается провайдером;
Внутренний – чаще задается заводскими настройками, но его также можно переписать. Самые популярные адреса: 192.168.1.1 и 192.168.0.1.
Советую прочитать полный разбор роутера – по этой ссылке.
Параметры
Итак, у нас есть вот такие нехитрые коробочки с сетевыми портами. Как я уже и говорил, порты могут быть разного вида. То есть работать как с витой парой, так и с коаксиальным и оптоволоконным кабелем. Есть совмещенные коммутаторы.
Например, есть два офиса: центральный (где находится сервер) и второстепенный. Второстепенный можно подключить с помощью оптоволокна. То есть связующий порт будет оптический. Но вот далее все остальные локальные порты будут типа Ethernet. Как видите коммутаторы могут иметь разное количество портов – всё зависит от потребности пользователя. Мелкие обычно используют в домашних условиях или небольших офисах. Большие же часто применяют в крупных организациях.
Также порты могут иметь разную скорость. Чаще используют входные порты по 1000 Мбит/с в секунду, а локальные по 100 Мбит/с. Если в организации используется более оживленный трафик, то локальные порты могут быть 1-2 Гбит/с или вообще использовать оптоволокно с более высокой скоростью.
PoE
Помимо всего у некоторых моделей есть поддержка PoE портов. PoE порт – это специальный вход, который позволяет питать устройство по сетевому кабелю. Например, у вас есть камера, которую нужно установить в труднодоступном месте, где нет отдельных розеток. Тогда питание можно подать по PoE выходу. То есть устройство одновременно будет подключено к сети и к питанию.
SFP
SFP-порты позволяют использовать «оптику» для подключения отдаленных устройств. Обычно витая пара имеет небольшую дистанцию действия – 50-100 метров. Оптоволокно может бить куда дальше. Также оптический кабель надежнее защищен от электромагнитного воздействия и имеет меньший диаметр.
Mpps
Ещё одна очень важная характеристика, а именно скорость обслуживания пакетов. Из названия понятно, что данный параметр должен быть достаточно высокий в больших локальных сетях. Измеряется в Mpps (million packet per second – миллион пакетов в секунду). В малых сетях используют слабые аппараты от 2,0 до 10,0 Mpps. В крупных компаниях, работающих с трафиком, до 71,4 Mpps. Понятно дело, что чем больше этот показатель – тем дороже switch.
Размер таблицы
У нас используется таблица именно-MAC адресов. Если локальная сеть будет слишком сложной и таблицы не будет хватать, то сеть может подтормаживать, так как коммутатору нужно будет перезаписывать новый адреса, на старые. Один адрес занимаем 48 бит. В некоторых случаях инженеру нужно изначально подсчитать – какого размера будет таблица.
Способ крепления
Можно разделить на два вида: настольный и настенный. Первый вариант обычно устанавливают в серверные шкафы. Второй вариант можно крепить в любой место и прикручивать хоть на потолок, хоть на стену. Подобные виды используют именно вдали от сервера при подключении большого количества машин.
Возможности и функции
Если вам нужен сетевой коммутатор, то я вам советую посмотреть важные функции, которые должен поддерживать тот или иной аппарат. В зависимости от поддержки будет расти или падать цена. В некоторых случаях определенные возможности не нужны, и поэтому не стоит за них переплачивать. Все зависит от загруженности сети.
Flow Control или управление потоком – есть во всех свитчах. Грамотное управление потоком позволяет снизить риск зависание сети;
Storm Control – или защита от широковещательного шторма. Шторм – это возникновение ситуации, когда в сети у коммутатора возникает слишком много пакетов, в результате они начинают теряться, какая-то информация не доходит или вовсе перестает передаваться. Очень часто возникает в результате петель. Важная функция для больших сетей.
Jumbo Frame или увеличенные пакеты – используются только в больших сетях. Тогда есть реальная возможность увеличить размер пакета, чтобы ускорить передачу данных. Для этого нужно, чтобы принимающее устройство также поддерживало эту функцию, а канал имел определенный размер.
IGMP Snooping – часто применяют в IP телевидении. Когда трафик распределяется точечно на определенного пользователя. С одной стороны, сеть разгружается. С другой стороны, коммутатор должен обладать не малой мощью, чтобы постоянно просчитывать пути и откликаться на запросы новых пользователей.
Поддержка режимов:
Полудуплекс – поддержка отправки пакетов в обе стороны, но одновременная передача запрещена. То есть передается по очереди
Дуплекс – одновременная передача.
Стекирование или расширение – используется, если на стандартном коммутаторе не хватает количества портов. Тогда подключают ещё один или несколько свичей. Технологии у каждой фирмы разные, и нужно учитывать скорость шины стекирования у определенной модели.
Поддержка QoS – приоритезация трафика по стандарту стандарт IEEE 802.1p. Когда более приоритетный трафик пропускают, а остальной сидит в очереди. Также за счет этой технологии выравнивается скорость передачи данных в сети. В результате уменьшается шанс заторов на линии.
Агрегирование каналов по стандарту IEEE3ad. Поддерживаются только дорогие аппараты. Возможность отправлять пакеты данных по нескольким кабелям и портам, чтобы увеличить скорость;
VLAN– разделение сеть на подсети. Например, бухгалтерия не видит отдел кадров и не имеет доступ к их сети, и наоборот.
Loopback Detection – помогает защитить сеть от петель – когда пакеты начинают бесконечно гулять в сети. Проблема в том, что отправитель может также бесконечно отсылать пакеты в сеть и забить её;
Сегментация трафика – разделение портов на отдельные сегменты. Разделение идет на физическом уровне для большей надежности;
Зеркалирование трафика – простая проверка всего трафика для обеспечения безопасности в сети.
Поддержка интернет протоколов – тут все понятно, аппарат должен помимо обычных функций уметь распределять трафик из глобальной сети.
Поддержка Wi-Fi – для подключения к локальной сети с помощью радиоволн по стандарту IEEE 802.11.
Более подробно про Wi-Fi можно прочитать тут.
Назначение
Дома – во многих статьях почему-то пишут первым именно домашнее использование. Да, ранее их действительно часто использовали дома и подключали соседей, а также друзей, чтобы порубиться в Counter Strike. Но сейчас в век интернета их уже редко увидишь, и на их смену пришли Wi-Fi роутеры.
Небольшие предприятия – сеть ограничивается только количеством компьютеров. Обычно их до 48 + сервер.
Умный дом – данная система достаточно популярна в частных домах. Также её могут использовать на небольших предприятиях.
Видеонаблюдение – если система становится слишком большой, то начинают использовать коммутаторы;
Промышленные сети – для правильного распределения трафика между сложными аппаратами.
ПОМОЩЬ СПЕЦИАЛИСТА! Если у вас ещё остались вопросы или вас нужно проконсультировать по данной теме – пишем в комментарии.
Видео
wifigid.ru
Cisco Learning | Принцип работы коммутатора
Вот мы и добрались до одного из первых интересных устройств. Коммутатор – одно из ключевых устройств каждой сети.
Рисунок 3.2 Принцип работы коммутатора
Прежде чем переходить к подробному разбору работы коммутатора, поясним некоторые элементы рисунка 3.2. 03FA – MAC-адрес записан не полностью для экономии места, Fa0/1 – номер порта (отверстие, в которое вставляется провод), Fa – FastEthernet, означает что максимальная скорость передачи данных на этом интерфейсе 100 Мб/с, 0/1 – порядковый номер порта.
Рассмотрим пример на рисунке 3.2 пошагово
Шаг 1. ПК1 формирует фрейм, предназначенный ПК3, указывая свой MAC-адрес в качестве отправителя (адрес отправителя 03FA, source 03FA) и MAC-адрес ПК3 в качестве получателя (адрес получателя 05FE, destination 05FE, допустим, что ПК1 уже знал MAC-адрес ПК3).
Рисунок 3.3 Фрейм от ПК1 к ПК3
Шаг 2. Коммутатор (далее Switch) принимает фрейм, смотрит на адрес отправителя (source 03FA) и ищет его в своей таблице коммутации (таблице MAC-адресов). Если такой адрес отсутствует, добавляет в таблицу (Fa0/1 | 03FA). Такая запись будет означать для него, что такой-то MAC-адрес сидит на таком-то порте и, если фрейм будет предназначен для этого МАС-адреса (МАС-адрес получателя совпадет со строчкой в таблице коммутации), то он отправит его на этот порт. Т.е. в самом начале switch изучает сеть, заполняет таблицу коммутации MAC-адресами и портами. После того, как он разобрался с адресом отправителя, он смотрит на адрес получателя (destination 05FE), в нашем случае его еще нет в таблице коммутации, тогда логика switch – отправить на все порты, кроме того порта, от которого данный фрейм пришел.
Шаг 3. Начнем с ПК2, который тоже примет фрейм, но сразу же его отбросит, т.к. адрес получателя не его адрес. ПК3 примет фрейм и обработает его (передаст на уровень выше). Допустим ПК3 формирует ответ, указывая свой MAC-адрес в качестве отправителя (05FE) и MAC-адрес ПК1 в качестве получателя (03FA)
Рисунок 3.4 Фрейм от ПК3 к ПК1
Шаг 4. По аналогии с шагом 2, первым делом switch смотрит на MAC-адрес отправителя и, если его нет в таблице МАС-адресов, добавляет (в нашем случае добавляет), в противном случае обновит таймер, по истечении заданного промежутка времени строчка с этим адресом будет удалена. Далее switch смотрит на МАС-адрес получателя, в нашем примере он находит его в своей таблице коммутации, и, значит, передаст фрейм напрямую через порт fa0/1.
Итоги нашего примера
Switch (коммутатор) после включения начинает изучать сеть, он узнает, на каком порту находится тот или иной MAC адрес. Switch смотрит на MAC адрес источника полученного фрейма и добавляет его в свою таблицу коммутации, если такого нет (очень важная информация!). Далее switch смотрит на адрес получателя и ищет его в своей таблице, если не находит, то рассылает на все порты кроме того, от которого тот был получен.
Главное – не только понимать, как это работает, но еще уметь представлять, как ходит фрейм по сети, поэтому ниже представлена “гифка”, которая визуализирует выше описанный пример (рисунок 3.4). В “гифке” показано, когда и как заполняется таблица коммутации. В конце коричневый фрейм (для автора это коричневый) идет прямиком от ПК1 до ПК3. Это говорит о том, что таблица коммутации заполнена, и коммутатор знает, на какие порты отправлять этот фрейм.
Рисунок 3.5 Заполнение таблицы коммутации
Широковещательный фрейм
Широковещательный фрейм (broadcast frame) – фрейм, где адресом получателя (destination) является широковещательный адрес (broadcast) – FFFF.FFFF.FFFF. Также у switch есть стандартное поведение при получении широковещательного фрейма – рассылает его на все порты, кроме того откуда он пришел (очень важная информация!).
Преимущество Switch над Hub:
Возможность передавать и принимать фреймы одновременно (это и есть full-duplex).
Избавление от коллизий (при условии full-duplex).
Возможность передавать несколько потоков фреймов за счет буферизации (временного хранения в памяти).
Switch может понимать фреймы, а, значит, может передавать их на требуемые порты (за счет таблицы коммутации, таблицы MAC-адресов).
Если вы нашли в тексте ошибку, выделите текст и нажмите Ctrl + Enter
ID: 80 Created: Oct 19, 2016 Modified Feb 27, 2017
ciscolearning.ru
что такое, для чего нужен, как работает, сравниваем с концентратором (Hub)
Автор Андрей Смирнов На чтение 8 мин. Просмотров 5.2k. Опубликовано
Научиться настройке MikroTik можно на онлайн курсе по оборудованию этого производителя. Автор курса является сертифицированным тренером MikroTik. Подробней Вы можете прочитать в конце статьи.
В этой статье мы поговорим о том, как работает коммутатор сети ethernet (switch) или мост. Это базовые знания, которыми должен обладать каждый сетевой инженер. Сетевой коммутатор локальной вычислительной сети является центральным элементом инфраструктуры. Понимание его работы является неотъемлемым навыком любого сетевого инженера.
Если у вас до сих пор не сформировались твердые знания о принципах работы данного класса сетевых устройств, то вы рано или поздно столкнетесь с неразрешимыми проблемами при устранении неполадок в вашей сети, например, широковещательный шторм.
Что такое коммутатор сети (ethernet switch / bridge) ?
Сетевой коммутатор (ethernet switch) — это устройство 2 уровня модели OSI, которое используется в качестве концентратора (центральной точки) для подключения других проводных устройств, работающих по технологии ethernet.
Как происходит подключение устройств?
На приведенном ниже рисунке объясняется, как устройства показано подключаются в единую сеть с общей шиной Ethernet и обмениваются друг с другом данными через коммутатор (switch) либо концентратор (hub). Устаревший на сегодняшний день тип устройств с общей шиной из-за снижения пропускной способности пропорционально количеству подключенных устройств.
Насколько дорого использовать коммутаторы в сети?
Своим появлением в 1989 году коммутатор сети ethernet switch обязан компании Kalpana (работала в Кремниевой долине в 1980 и 1990 годах и была поглощена компанией Cisco в 1994 году). Он назывался Kalpana EtherSwitch EPS-1500 и имел на борту 7 портов.
С тех пор идет активное развитие данного типа устройств и с каждым годов снижается стоимость подключения к порту.
Надежность сети при использовании коммутатора (ethernet switch)
Является вы использование коммутатора локальной вычислительной сети в качестве центрального звена сети надежным решением? Если вы сравниваете коммутируемый Ethernet с коаксиальным Ethernet, коммутатор определенно более надежен. До того, как коммутатор был изобретен, компьютеры были подключены в цепь. В конце которой подключался концевик (terminator) для поглощения сигнала. Иначе множественная пересылка сигнала сводила полезный трафик в сети к нулю.
В чем отличие Коммутатора (Switch) от Концентратора (Hub)
Концентратор (Hub) — это сетевое устройство, позволяющее подключать несколько компьютеров к одной сети. Концентраторы могут быть основаны на соединениях Ethernet, Firewire или USB.
Коммутатор (Switch) — устройство управления, которое включает или выключает поток электроэнергии в цепи. Он также может использоваться для маршрутизации информационных шаблонов при потоковой передаче электронных данных, передаваемых по сетям. В контексте сети коммутатор – это компьютерное сетевое устройство, которое соединяет сегменты сети.
Концентратор (Hub)
Коммутатор (Switch)
Уровень OSI
Физический: концентраторы классифицируются как устройства 1 уровня в соответствии с моделью OSI.
Канальный: сетевые коммутаторы работают на 2 уровне модели OSI.
Функционал
Для соединения сети персональных компьютеров их можно объединить через центральный концентратор.
Позволяет объединять несколько устройств, управлять портами и настройками безопасности VLAN
Форма передачи данных
Электрический сигнал или биты
Кадр (для L2 Switch) и Пакет ( для L3 switch)
Порты
4/12 портов
Коммутатор является многопортовым мостом. 24/48 портов
Тип передачи
Концентраторы всегда рассылают кадры на все порты (flooding), кроме того, с которого пришел; рассылка может быть одноадресной (unicast), многоадресной (multicast) или широковещательной (broadcast)
Первоначально широковещательная (broadcast) рассылка; затем одноадресная (unicast) и многоадресная (multicast) рассылка по мере необходимости.
Тип устройства
Пассивное устройство (без программного обеспечения)
Активное устройство (с программным обеспечением)
Used in (LAN, MAN, WAN)
LAN
LAN
Таблица сетевых адресов (MAC)
Сетевой концентратор не может узнавать или сохранять MAC-адрес.
Коммутаторы используют CAM-таблицу с доступной памятью, к которой обычно обращается ASIC (специализированные интегрированные микросхемы).
Режим передачи
Полудуплекс (Half duplex)
Полу-/полный дуплекс (Half/Full duplex)
Широковещательный домен
Концентратор имеет один широковещательный домен.
Коммутатор имеет один широковещательный домен [если не реализован VLAN]
Определение
Электронное устройство, которое соединяет множество сетевых устройств вместе, чтобы устройства могли обмениваться данными
Сетевой коммутатор — это компьютерное сетевое устройство, которое используется для соединения множества устройств в компьютерной сети. Коммутатор считается более продвинутым, чем концентратор, потому что он будет отправлять сообщения на нужный порт устройства или запрашивать информацию с него.
Скорость
10Mbps
10/100 Mbps, 1 Gbps
Адрес, используемый для передачи данных
Использует MAC-адрес
Использует MAC-адрес
Необходимо для подключения к Интернету?
Нет
Нет
Категория устройства
Не интеллектуальное устройство
Интеллектуальное устройство
Производители
Sun Systems, Oracle, Cisco
Cisco, D-link, Juniper, MikroTik
Столкновения (Collisions)
Столкновения (Collisions) обычное явления в инфраструктурах, использующих концентраторы.
В полнодуплексном коммутаторе не происходит столкновений.
Spanning-Tree
Не используется Spanning-Tree
Возможно использование множества экземпляров Spanning-Tree
Различия в производительности концентраторов и коммутаторов
Коммутатор является эффективной альтернативой концентратору. Люди, как правило, выигрывают от использования свитча, если в их домашней сети четыре или более компьютеров. Также вы невооруженным взглядом заметите разницу при использовании в своей сети приложений, которые генерируют значительный объем сетевого трафика:
таких как многопользовательские игры
обмен тяжелыми музыкальными файлами.
Технически говоря, концентраторы работают с использованием широковещательной модели, а коммутаторы — с использованием модели виртуальных каналов. Например, когда четыре компьютера подключены к концентратору, и два из этих компьютеров взаимодействуют друг с другом, концентраторы просто передают весь сетевой трафик на каждый из четырех компьютеров. Коммутаторы, с другой стороны, способны определять пункт назначения каждого отдельного элемента трафика (такого как кадр Ethernet) и выборочно пересылать данные только на один компьютер, который действительно нуждается в этом. Вырабатывая меньше сетевого трафика при доставке сообщений, коммутатор работает лучше, чем концентратор в загруженных сетях.
При добавлении в сетевой обмен дополнительные устройства вы создаете огромное количество коллизий в случае концентратора, потому как устройства не могут одновременно считывать и передавать информацию.
В следующем видео сравниваются концентраторы, коммутаторы и маршрутизаторы.
Почему коммутируемый Ethernet более надежный и эффективный?
При возникновении проблемы в coaxial-ethernet (10base2) трудно определить где ошибка. Инженеру-связисту необходимо проверить все разъемы один за другим, что требует времени. Также необходимо учесть, что из-за хрупкости коаксиального кабеля сеть часто выходит из строя.
Коаксиальный ethernet использует 2 кабеля (внутренний и внешний) для передачи и приема данных в сеть. При полудуплексной связи, компьютер не может одновременно данные принимать и отправлять. Когда сеть загружена возникают множественные коллизии при попытки одновременно вести передачу данных двумя и более станциями. Что почти гарантированно снижает скорость передачи данных в разы, нередко десятки и сотни раз..
При работе с коммутируемой сетью, если один кабель поврежден, он не будет влиять на других абонентов. Если сломается порт, пользователь может просто подключить кабель к другим работающим портам.
Что касается производительности, механизм внутри коммутатора может обеспечить полнодуплексную связь (full duplex). Поскольку вероятность возникновения коллизий в сети при правильной настройке оборудования практически сведена к нулю, то данный факт повышает производительность всей системы.
Как работает коммутатор локальной сети Ethernet?
Коммутатор локальной сети анализирует заголовок 2 уровня входящего кадра. Каждый ethernet кадр содержит 2 адреса: MAC-адрес источника и MAC-адрес назначения.
Коммутатор вместе с кадром получает MAC-адрес источника и записывает в свою таблицу коммутации напротив номера порта. Эта таблица — волшебный секрет того, как коммутатор обеспечивает полдуплексную связь.
Затем в таблице коммутации ищется MAC-адрес получателя, и принимается решение о пересылке кадров на определенный порт. Благодаря данному механизму другие сетевые устройства докальной сети не знают о кадрах соседей. Таким образом мы добиваемся работы в полнодуплексном режиме (full duplex).
Процесс пересылки кадра между компьютерами:
Получение коммутатором на 1 порту сообщения от компьютера А с адресом назначения bbbb.bbbb.bbbb
Проверка таблицы коммутации с целью найти порт, к которому подключен адресат с mac-адресом bbbb.bbbb.bbbb
Такой адрес не обнаружен, рассылка запроса на все порты, кроме того, с которого пришло первоначальное сообщение
Ответ от компьютера В компьютеру с адресом aaaa.aaaa.aaaa, так как mac-адрес сетевой карты компьютера В совпадает с заголовком кадра
Заполнение коммутатором свой таблицы ответом от компьютера В
Пересылка ответа от компьютера В компьютеру А
Анимация ниже более наглядно описывает процесс обмена данными между участниками сети:
Вопрос: что произойдет, когда MAC-адрес назначения отсутствует в таблице коммутации свитча, в какой порт следует пересылать он пересылает?
Ответ: в этом случае коммутатор пересылает кадр во все порты кроме, того с которого получил первоначальное сообщение; ожидая, что станция ответит на сообщение, и коммутатор обновит свою коммутационную таблицу.
Принципы работы коммутаторов сети ethernet раскрыты и теперь необходимо сосредоточиться на выборе класса свитчей для ваших задач.
Как подобрать коммутатор (Switch) для сети компании?
MikroTik: куда нажать, чтобы заработало? При всех своих достоинствах, есть у продукции компании MikroTik один минус – много разобщенной и далеко не всегда достоверной информации о ее настройке. Рекомендуем проверенный источник на русском языке, где все собрано, логично и структурировано – видеокурс «Настройка оборудования MikroTik». В курс входит 162 видеоурока, 45 лабораторных работ, вопросы для самопроверки и конспект. Все материалы остаются у вас бессрочно. Начало курса можно посмотреть бесплатно, оставив заявку на странице курса. Автор курса является сертифицированным тренером MikroTik.
14bytes.ru
Коммутатор Зажигания - Предназначение, Разновидности, Устройство и Схема Подключения, Принцип Действия, Признаки Неисправности, Замена и Ремонт, Стоимость
Блок питания и пара проводов — вот и всё, что представляет собой автомобильный коммутатор зажигания. Но с другой стороны, это довольно сложный и ответственный узел. Сегодня он продолжает эволюционировать, показывая всё лучший и лучший коэффициент выжигания горючей смеси. При этом передовые устройства способны эффективно работать и на АИ-93, повышая отдачу движка на низких оборотах.
Что такое коммутатор зажигания в автомобиле
В автомобилях данные устройства применяются давно. Только раньше это были довольно примитивные устройства. Сегодня, пережив конструктивную модернизацию, приборы стали высокотехнологичны и представляют одну из главных артерий системы зажигания.
Для чего нужен, где находится и как выглядит
Как и было сказано, коммутатор нужен для езды на бензине низко октановых марок. Стоит такое горючее значительно дешевле премиум-сортов. При этом отдача мотора по-прежнему остаётся на высоком уровне за счёт лучшего воспламенения смеси воздуха и топлива. Таким образом, коммутатор — это устройство, содействующее появлению в блоке зажигания продуктивной искры. Его можно считать микрокомпьютером, стимулирующим преобразователь. Естественно, коммутатор должен опираться на какие-то данные. В нашем случае, это сигналы датчика синхронизации.
На машинах с ГБО коммутатор выполняет ещё одну задачу: он тестирует компоненты зажигания, регулируя УОЗ автопилотом в ходе переключения на метан.
Конструктивно элемент может совмещаться с ЭБУ. В этом случае он располагается на трамблёре (Ваз 2106, 2107) или рядом с преобразователем — на ЗИЛ ТК102У. Не исключение — вариант нахождения на отдельной металлической площадке. Как правило, это или крыло автомобиля, или перегородка под капотом (Ford). А на немецких Audi коммутатор установлен в моторном отсеке под лобовым стеклом. Для него предусмотрен защитный кожух из влагонепроницаемого материала.
Устройство и принцип работы
Первые коммутаторы были крайне примитивны. Простая схема из транзисторов регулировалась при помощи электрического импульса. В таком виде устройство просуществовало недолго. Наступила эра высоких технологий, благодаря которой стали применяться более эффективные инновационные решения.
На машинах, собираемых в РФ, стимулятор искры был впервые использован на автомобиле Ваз-2108. Устройство относилось к серии 36.3734 тоже родного производства. В дальнейшем стали применяться более модернизированные коммутаторы с различным исполнением конструктивно-технической схемы. Однако комбинированная или составная сборочная технология всегда оставалась для российских микросхем неизменной. И плюс её в том, что она ремонтопригодна, в отличие от тех же зарубежных аналогов.
Сегодня коммутатор — это совокупность нескольких элементов: свечи, транзисторы, датчики. Он может использоваться в гибридном или тиристорном зажигании. Электрические импульсы управляются автоматически, что даёт целый ряд практических преимуществ:
отсутствие перебоев на максимальных скоростях;
повышение надёжности работы блока;
возможность увеличения объёма цилиндров мотора.
А когда внедрили элемент Холла, и коммутатор начал управлять сразу несколькими преобразователями, преимущества только увеличились. Настолько, что на каждой отдельной свече стали использовать тандем «катушка+коммутатор». Вот чего конкретно удалось достичь:
более сильной и надёжной стала искра в системе зажигания;
исчезли потери мощности в трамблёре;
улучшился холостой ход;
снизился расход горючего;
стабилизировался пуск на холодный двигатель.
Принцип работы коммутатора можно представить себе так. Сначала система контролирует положение коленвала двигателя. Затем индуктивным датчиком Холла, входящим в конструкцию распределителя, снимаются показания с положения поршней в цилиндрах. Он же и подаёт на коммутатор импульс. Сигнал усиливается до 12 вольт и поступает на катушку. За счёт этого уменьшается сила тока, и повышается напряжение.
Нынче для эффективного воспламенения горючего в автомобилях ВАЗ 2109, 2110, 2114 «Самара», а также ЗАЗ-1102 применяются электронные коммутаторы. Серия этих устройств 3734 выпускается под артикулами 3620-, 36- и 78. Задачи ключа здесь выполняет производительный мосфит, а величиной тока управляет совокупная электросхема.
Схема подключения
Получается, что роль коммутации — просто усиливать импульс до требуемого значения. Так и есть, ведь недаром конструкторы сравнивают описываемый элемент с полевыми транзисторами Дарлингтона. Только в коммутаторе главную функцию выполняет индуктивный датчик с тремя выводами. Когда в зону датчика входит металлическая пластина, начинается генерация тока. Далее напряжение подаётся на вход коммутатора. Здесь импульс только увеличивается и идёт дальше на преобразователь.
Коммутаторная схема зажигания достаточно проста. Сложность вызывает её установка. Она должна быть проведена максимально грамотно, иначе никакого толка не будет. Важный нюанс касается также подбора транзисторов. Они должны проверяться через специальную измерительную аппаратуру, так как даже у одинаковых на первый взгляд полупроводников характеристики сильно отличаются.
Ниже, в качестве примера, приведена схема 4-портового коммутатора 76.3734 типа КЭТ, используемого на автомобилях Ваз:
предназначен для БСЗ;
состоит из контроллёра L497 или его аналога КР1055ХП2;
возможно подключение к тахометру, расположенному на торпеде;
классическое подключение — через двухкаскадный усилительный блок.
Теперь по его выводам:
1 (выход), с него снимается усиленный импульс — соединяется с главным выводом катушки;
2 (контакт) — соединяется с отрицательной клеммой АКБ;
3 (масса) — интегрируется внутри блоком с контактом 2;
4 — принимает питание от аккумулятора;
5 — выводит постоянное питание, всегда под напряжением 12 В.
Примечательно, что между 4 и 5 используется стабилизатор напряжения, так как здесь всегда имеется сопротивление.
Подробнее схема подключения коммутатора на Ваз 2108 приведена на фото.
Существующие разновидности коммутаторов
Различают два основных типа устройств: AC CDI и DC CDI. Первые коммутаторы небольшие и простые, в их схеме используется высоковольтный генератор. Вторые более распространены, снабжены четырьмя контактными группами с минусом и плюсом, а также отдельными выходами на катушку и датчик Холла. Но последние функционируют только при наличии высокого напряжения, подведённого с внешнего источника.
Коммутаторы также принято классифицировать, согласно функциональным особенностям:
традиционные или стоковые устройства, строго соответствующие параметрам автомобиля — как правило, ставятся ещё с завода;
спортивные — имеют возможность увеличения верхнего предела количества оборотов ДВС, однако такая разновидность является уделом опытных специалистов и имеет риски аварий;
с возможностью регулировки фаз УОЗ — отличный вариант, когда требуется выровнять крутящий момент силовой установки, улучшить разгонные характеристики и стабилизировать работу мотора на разных оборотах.
Безусловно, коммутаторы принято делить и по основным разновидностям.
Электронные
Данный тип коммутатора ещё называют микропроцессорным с транзитными ключами. Он используется для управления напряжением преобразователя и снижает нагрузки на соединения, тем самым повышая мощность тока.
Преимущества электронной системы:
возможность лучшего наполнения цилиндров ДВС;
эффективная отдача мотора на всех оборотах.
Гибридные
В этих системах дополнительно используется механическая часть — кулачковый трамблёр. Электронику представляет сам коммутатор и катушка. Узел очень надёжен, экономичен и удобен. К примеру тем, что при выходе из строя свитча, можно переключаться на старый преобразователь с бегунком.
Бесконтактные
Группа с транзисторами, широко применяемая с начала восьмидесятых годов. Она вытеснила допотопные классические контактные системы. Считалась в своё время наиболее эффективной, так как показатели её работы были намного выше, чем у остальных коммутаторов.
Двухканальные
Та же бесконтактная система, но значительно модернизированная. К примеру, обычная БСЗ имеет те же недостатки КСЗ — потерю энергии искры, нестабильность холостых оборотов, ограничение на регулировку УОЗ, высокую чувствительность к загрязнениям и влажности. Двухканальная система или ДБСЗ избавляет систему зажигания от этих минусов, обеспечивая ещё более высокую энергию искры за счёт использования дополнительных катушек. Также здесь не применяются проблемные подвижные элементы — бегунок и уголёк, а крышка выполняет лишь функции защитного элемента. Поэтому она и не подвержена выгоранию.
Интересно, что двухканальное зажигание применялось и раньше. Это было реализовано на экспортных Ваз-21083. Однако коммутаторы данного типа, называемые еще двухконтурными, не получили широкого распространения из-за низкого качества тогдашней электроники.
Ещё один нюанс, касающийся коммутаторов. У них могут быть разные выходы. Те, у которых стоит по умолчанию цифра «1», крайне опасны для катушек зажигания в тот момент, когда испытывают неисправности. Но плюс таких устройств в том, что с ними можно интегрировать стандартные преобразователи для контактного зажигания.
Для вторых типов коммутаторов, в которых по умолчанию используется выход «0», обычные катушки совершенно не подходят. Они сильно нагреются, либо искра не будет нормально подаваться. К такому коммутатору относится, например, модель для БЦЗ 131.3734.
Признаки неисправности коммутатора
Потеря системой зажигания искры — один из главных симптомов отсутствия исправности коммутатора. Естественно, это сопровождается трудным запуском двигателя, перебоями в его работе. Однако специалисты предупреждают — торопиться с заменой элемента не стоит, ведь подобные признаки присущи также и при других неполадках. К примеру, это же происходит при обрыве ремня ГРМ, повреждении трамблёра или катушки зажигания, слабых контактах соединений проводки и т. д.
Одним словом, проверять коммутатор нужно грамотно. Но как это сделать без квалификации, ведь устройство имеет сложную конструкцию. Есть несколько практичных способов. Первый, это не заморачиваться и установить новый коммутатор. Если проблема исчезнет, значит, всё отлично. Второй способ подразумевает использование контрольной лампы на 12 вольт и стандартного набора ключей.
Далее по инструкции:
обесточить аккумулятор;
снять управляющий провод «К» с катушки зажигания — он часто бывает выкрашен в коричневый или красный цвет и проложен к главному зажиму коммутатора;
на его место установить один конец контрольной лампы, второй — соединить с проводом «К»;
Если лампа начнёт мигать — коммутатор исправен. Обратная ситуация, когда индикатор не подаёт никаких рабочих признаков, укажет на проблемы с устройством. Вряд ли оно полностью испортилось, тогда двигатель не завёлся бы с первого раза.
Признаки неисправности коммутатора точнее можно увидеть на профессиональном оборудовании — специальном стенде. Это даёт возможность не только определить факт работоспособности устройства, но и рассчитать длительность импульсов. Кроме того, специалисты отдельно измеряют напряжение на выходе датчика Холла — норма не более 0,4 В. Также замыкается первый и второй выводы коммутатора при включённом зажигании, чтобы протестировать наличие искры.
Инструкция по ремонту и замене
Стоит отметить, что на современные российские коммутаторы подходят выходные ключевые транзисторы не только штатного производства, а в частности КТ890А, КТ898А1, но и зарубежный аналог BU931. Реализован он может быть, как без корпуса, так и в конструктивном исполнении ТО-220 или ТО-3.
Что касается управляющей схемы, то в коммутаторы серии 78.3734 подходят:
4-канальный усилитель типа К1401УД2Б;
отечественная микросхема Р1055ХП1;
зарубежная L497B SGS-TOMSON.
Перед тем, как приступать к замене коммутатора или его составляющих, рекомендуется протестировать целостность проводки и соединений системы зажигания. Особое внимание уделить генератору. Также не лишним будет проверка напряжения от бортовой сети на датчик Холла.
Подробнее по неисправностям и способам их ремонта ниже в таблице.
Стоимость
Подробнее в таблице.
И напоследок помните, что при замене мощного ключевого транзистора важно обращать внимание на качество фиксации детали к корпусу коммутатора. Многие новички допускают здесь ошибки или наносят недостаточно теплопроводящей пасты. В результате устройство не удаётся отремонтировать.
Таблица: структурная схема подключения управляющей микросхема L497B фирмы SGS-TOMSON (отечественный аналог Р1055ХП1) для коммутаторов серии 78.3734
№ вывода
Назначение
№ вывода
Назначение
1
Общий
9
Вывод для подключения конденсатора к узлу защиты
2
Общий (сигнальный)
10
Вывод для подключения запоминающего конденсатора к схеме управления задержкой
3
Питание 1
11
Вывод для подключения конденсатора коррекции к схеме управления задержкой
4
Не используется
12
Вывод для подключения внешнего резистора опорного напряжения
5
Вход сигнала с датчика Холла
13
Вход ограничителя тока
6
Выходной сигнал широтно-импульсного модулятора
14
Выходной сигнал для управления внешним транзистором
7
Вывод для подключения дополнительного стабилитрона
15
Вход ограничителя амплитуды выходных импульсов
8
Вывод для подключения конденсатора коррекции постоянной времени формирователя
16
Питание 2 (выходной каскад)
Таблица: неисправности коммутатора и способы устранения
Неисправности
Причина
Способ устранения неисправности
Двигатель заводится, но через 3-5 мин останавливается. Через 20-30 мин двигатель вновь возможно запустить, но через короткое время он опять останавливается. Корпус коммутатора нагревается до температуры выше 50 градусов по Цельсию.
Неисправны элементы коммутатора.
Проверяют исправность транзистора. Если он нормально функционирует, но сильно нагревается в рабочем состоянии, увеличивают номинал резистора. В случае, если после этого транзистор продолжает сильно нагреваться, последовательно заменяют микросхему и транзистор. При монтаже транзистора обращают особое внимание на качество его крепления к корпусу коммутатора с использованием теплопроводящей пасты.
Мотор запускается только через определённые промежутки времени. Коммутатор сильно нагревается.
Неисправна схема защиты коммутатора.
Проверяют исправность элементов схемы защиты.
Двигатель автомобиля не заводится.
Неисправны элементы коммутатора, формирующие напряжение питания датчика Холла.
Проверяют исправность транзистора и остальных элементов устройства.
Искры на свечах нет.
Неисправны элементы электронного коммутатора.
Проверяют исправность элементов устройства. Если указанные элементы работают, а неисправность осталась, следует заменить микросхему.
Искра нестабильная.
Нарушены контакты в разъемных соединениях коммутатора и датчика Холла.
Проверяют качество разъемных соединений коммутатора и датчика.
Двигатель работает неустойчиво.
Неисправен датчик Холла.
Заменяют датчик Холла.
Нестабильная работа силовой установки.
Неисправны элементы электронного коммутатора.
Проверяют последовательно элементы коммутатора. Если указанные детали исправны, а неисправность не устранилась, следует заменить микросхему.
Коммутатор с современной электронной базой а/м ГАЗ, УАЗ «СОАТЭ»
850
Коммутатор системы зажигания ТК-200-0 / ТК-200-01-0 (аналог BU931)
1000
Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
swapmotor.ru
Коммутатор зажигания, схема, устройство
Характерной особенностью автомобиля можно считать его быстрое моральное старение, но долгую жизнь. Самое современное сегодня авто, как минимум через два года будет уже уступать другим, более новым, с улучшенными характеристиками, машинам. Но и сейчас на дорогах встречаются автомобили прошлого века. Поэтому не просто интересно, но порой и необходимо, знать хотя бы в общих чертах, что собой представляют подобные транспортные средства, их устройство, особенности, в том числе и такую вещь, как простой коммутатор зажигания, значительно изменивший возможности машины.
Что собой представляет и каков принцип работы коммутатора зажигания
Ещё на самых первых автомобилях для поджигания горючей смеси использовались системы батарейного зажигания, функциональная схема которой приведена на рисунке
Указанный рисунок позволяет понять, что ее работа основана на принципе самоиндукции. При разрыве цепи протекания тока в обмотке бобины 3, во вторичной наводится высоковольтная ЭДС, вызывающая появление искры на контактах свечи 2. Разрыв цепи вызывается размыканием контактов прерывателя 6.
Не касаясь достоинств или недостатков, следует отметить, что такая схема работала на автомобиле долгое время. И только появление новой элементной базы, дало толчок дальнейшему развитию подобного устройства, сохранив первоначальный принцип его работы.
Электронный коммутатор зажигания – следующий шаг в развитии
Самый простой и напрашивающийся вариант – использование транзисторных ключей для управления токами, протекающими через катушку зажигания. Так появился электронный коммутатор напряжения. Схема подобного простого устройства приведена ниже:
Коммутатор не влияет на первоначальный принцип работы, основанный на электромагнитной индукции. Роль электронных ключей, в качестве которых использованы транзисторы VT1 и VT2, заключается в том, чтобы уменьшить нагрузку на контакты прерывателя S1 и увеличить ток, протекающий через обмотку катушки L1. Следствием такого технического решения стало:
повышение надежности работы всей системы зажигания;
обеспечение возможности ее работы на больших оборотах двигателя и при высокой скорости движения;
повышение степени сжатия.
Каким может быть коммутатор системы зажигания
Приведенная выше схема коммутатора – лишь один из вариантов, как может быть реализовано устройство зажигания. Это выполняется с использованием:
транзисторов;
тиристоров:
гибридных элементов;
бесконтактных датчиков.
Транзисторная схема коммутатора рассмотрена выше, тиристорная схема использует накопление энергии в конденсаторе, а не в электромагнитном поле катушки зажигания. В ходе работы тиристорной системы, при поступлении управляющих сигналов, схема подключает заряженный конденсатор к обмоткам катушки, через которую он и разряжается, вызывая появление искры. Не касаясь достоинств и недостатков, которыми обладает та или иная схема, достаточно сказать, что любое подобное устройство обеспечивает значительное улучшение всех параметров системы зажигания, а коммутатор со временем вытеснил обычное батарейное зажигание.
Однако необходимо отметить и ещё один этап развития системы, и коммутатора в частности. Использование электронных компонентов и введение в конструкцию автомобиля коммутатора, позволило со временем отказаться от контактного прерывателя напряжения и заменить его бесконтактным датчиком. Такая система, в отечественных автомобилях, впервые была применена в машинах ВАЗ, в частности ВАЗ 2108. Подобный принцип работы, когда коммутатор получает сигналы от специального узла, на ВАЗ 2108 реализован с использованием датчика Холла.
При рассмотрении вариантов, каким может быть устройство коммутатора, нельзя обойти вниманием развитие самой системы зажигания. Основной принцип, который реализуется при ее построении – повышение надежности и эффективности работы всей системы. Достигается это применением микропроцессорных систем, использующих показания многочисленных датчиков. Для работы с такими системами требуется, как минимум, двухканальный коммутатор, а в последнее время и отдельная катушка, и коммутатор на каждую свечу. Такой подход – двухканальный коммутатор (в дальнейшем и многоканальный) позволяет обеспечить:
более мощную искру;
исключение потерь в трамблере;
стабильный холостой ход;
улучшенный пуск при пониженной температуре;
снижение расхода топлива.
Стоит отметить, что двухканальный коммутатор позволяет избавиться от бегунка.
Как определить неисправность коммутатора зажигания
Введение в конструкцию автомобиля коммутатора зажигания, особенно на отечественных авто семейства ВАЗ, позволило повысить их надежность. И хотя первым серийным автомобилем с электронной системой зажигания был ВАЗ 2108, подобные устройства стали ставиться на многих других машинах, в первую очередь на классику. Однако использование такого достаточно сложного изделия привело к тому, что найти возникающую неисправность, а также проверить и отремонтировать коммутатор стало возможным по большей части только в условиях специализированных центров. Внешними признаками, свидетельствующими, что появилась неисправность, могут быть:
двигатель не заводится, искры на свечах нет;
мотор заводится, но глохнет через несколько минут;
мотор работает неустойчиво, если коммутатор заменить на заведомо исправный, дефект устраняется.
Самый простой способ выявить неисправность и проверить коммутатор, как уже отмечено, – установить заведомо исправный. Из-за достаточно низкого качества коммутаторов, поступающих на комплектацию автомобилей семейства ВАЗ, в том числе и ВАЗ 2108, водителям приходится возить с собой дополнительные коммутаторы для замены отказавшего. Однако существует и косвенный принцип оценки, позволяющий проверить работоспособность изделия и выявить его неисправность.
Для этого можно воспользоваться показаниями вольтметра в комбинации прибора. Надо включить зажигание, при этом стрелка установится посередине шкалы, а немного погодя качнется вправо (из-за отключения питания катушки при неработающем двигателе). Такое поведение стрелки свидетельствует, что неисправность в коммутаторе отсутствует. В том случае, когда вольтметра нет, чтобы проверить зажигание, потребуется контрольная лампа. Один ее конец присоединяется на массу, другой – к выходу катушки, соединенному с клеммой 1 коммутатора. Если включить зажигание, то при исправном коммутаторе через некоторое время лампа станет гореть ярче.
Однако, в некоторых случаях, неисправность зажигания не связана с отказом коммутатора. Надо проверить состояние проводов, в первую очередь контакт с массой и состояние разъемов. Также необходимо проверить датчик Холла.
Появление в конструкции автомобиля, в том числе и отечественного ВАЗ 2108, коммутатора напряжения, явилось закономерным результатом развития системы зажигания. Дальнейшим ее улучшением стало использование сначала двухканальных, а затем многоканальных коммутаторов для повышения эффективности работы.
znanieavto.ru
что это такое и в чем разница?
Коммутаторы – это функциональное звено домашней или рабочей сети. Для обычных пользователей непростая задача грамотно подобрать из приличного ассортимента коммутаторов устройство, которое удовлетворит по функциональности и рабочему потенциалу. Даже опытным менеджерам нужно время, чтобы проанализировать конкретную ситуацию и подобрать лучшее оборудование.
Важно сначала точно определить круг выполняемых задач коммутатором, а потом уже под это все выбирать подходящий вариант. Коммутаторы бывают разные, но все они предназначены для объединения в одном сегменте нескольких сетевых узлов, между которыми происходит постоянный обмен информацией, передача данных.
Устройства отличаются:
скоростью, с которой они способны передавать информацию;
функциональными возможностями;
«начинкой».
Свитч может быть также управляемым и неуправляемым. Если поставлена задача выбрать подходящее оборудование, обязательно надо разобраться в тонкостях работы и индивидуальных возможностях каждого типа.
Что такое управляемый коммутатор?
Из представленных здесь свитчей – это более сложное оборудование с расширенным функционалом и большими возможностями. Встроен микропроцессор, поэтому потенциал управляемых коммутаторов больше впечатляет:
контроль прав пользователей в сети: если проблема с MAC-адресом или IP-адресом коммутаторы легко ограничивают авторизацию пользователей;
могут работать, как и неуправляемый коммутатор;
работают на канальном и сетевом уровне;
коммутаторы могут делать статическую маршрутизацию;
несколько способов добраться к настройкам: CLI, QoS, IP, VLAN, SNMP;
работают с протоколами OSPF, ECMP.
Иногда клиентам не нужен такой мощный узкоспециализированный компьютер, как еще называют управляемые коммутаторы. Поэтому можно воспользоваться альтернативой – интеллектуальным коммутатором. Это что-то среднее между управляемым и неуправляемым коммутатором. Простое устройство считается полууправляемым, настраиваемым, в оснастке – базовый функционал. Конечно, с полноценным управляемым оборудованием оно не сравнится, но отлично подходит для организации надежных и легкоуправляемых малых и средних локальных сетей. При ограниченном бюджете – это лучшее решение, особенно, если весь предлагаемый функционал управляемого коммутатора не востребован.
От уровня свитча зависит, какой функционал он способен предложить клиенту. Устройства второго уровня функционируют на канальном уровне модели OSI, третьего уровня, как маршрутизаторы, работают на сетевом уровне. У управляемого коммутатора может быть такая функция, которая подпитывает электроэнергией малогабаритные устройства, помимо того, что он выполняет свои прямые обязанности: соединяет рабочие станции для передачи данных, создавая надежную и качественную сеть.
Что такое неуправляемый коммутатор?
Функционально неуправляемые коммутаторы могут самостоятельно передавать информацию непосредственно получателю. Пакеты данных не уходят всем подряд за счет того, что в памяти коммутаторов сохранена таблица MAC-адресов. Следовательно, устройство не перепутает и точно знает, какой машине, какой соответствует порт.
Из всего ассортимента коммутаторов именно неуправляемые коммутаторы считаются наиболее простыми:
отлично организовывают небольшие сети дома или в офисе без привлечения IT-специалистов;
коммутаторам не требуется точная настройка профессионалов;
оснащенные по минимуму полезными функциями, неуправляемые коммутаторы успешно и эффективно обеспечивают основные сетевые соединения;
после простых действий оборудование готово к работе: подключение к электроэнергии и подсоединение рабочих станций через порты.
Управляемым коммутаторам и неуправляемым свойственен и общий функционал: в одну сеть объединяют рабочие устройства. Разница между ними вот в чем:
количество машин;
настройка сети и рабочих машин;
возможность управлять функционирующей сетью.
Неуправляемый свитч, размещая дома или на производстве, в офисе, рассматривают настольный вариант, хотя часто устройства устанавливают в специальные стойки. В каждом конкретном случае выбирают более подходящее решение. Можно еще рассматривать и вертикальное крепление небольшого неуправляемого коммутатора.
Преимущества устройств:
бюджетная цена;
экономное потребление энергоресурсов, поэтому они выгодные;
простота в эксплуатации;
отказоустойчивость коммутаторов на высоком уровне;
отличная надежность;
некоторые коммутаторы оснащены особыми портами «uplink». Благодаря этому их можно соединить с устройством, которое находится выше в сетевой иерархии.
Для обеспечения всем необходимым малых сетей вполне достаточно возможностей, которые предложит неуправляемый коммутатор, который может работать в среднескоростном и высокоскоростном режиме в зависимости от модификации. Так еще и удастся сэкономить на покупке управляемого коммутатора, так как в этом не будет необходимости.
Сходства между управляемым и неуправляемым коммутатором
Выделяют следующие сходства между сетевыми устройствами:
друг с другом могут взаимодействовать несколько рабочих станций, когда подключены к сети – это обеспечивает, как коммутатор управляемый, так и неуправляемый;
посредством Ethernet между собой подключают неуправляемые коммутаторы. К коммутаторам любого типа подключают управляемые устройства.
Разница между управляемым и неуправляемым коммутатором
Отличия между этими устройствами сосредоточены в таких нюансах:
производительности;
особенностях;
безопасности;
эксплуатации;
бюджете.
Коммутаторы, которыми можно управлять, поддерживают настройку, трафик и доступ контролируется, можно удаленно ликвидировать проблемы с сетью. А неуправляемый коммутатор представлен с ограниченной конфигурацией.
Разница между управляемым и неуправляемым коммутатором и в особенностях. Первые поддерживают динамический контроль, можно выполнить резервирование, зеркалирование портов. У вторых конфигурация строго фиксированная. Поддержка любого интерфейса невозможна, как и параметров конфигурации.
Такие коммутаторы, как управляемые, славятся отменной безопасностью: защита данных, управления. Неуправляемые устройства не могут похвастаться высоким уровнем безопасности. Единственное, что есть – запираемый порт.
Управляемые коммутаторы нужны для организации крупных корпоративных сетей, поэтому стоят дороже. Неуправляемым коммутаторам свойственно построение небольших домашних и корпоративных сетей.
galtsystems.com
Что такое сетевой коммутатор?
Коммутатор – это устройство обеспечивающее соединение узлов компьютерной сети для организации единой системы доступа пользователей к программным, техническим и информационным ресурсам. Узлом сети считается любое устройство с IP-адресом способное совершать обмен данными.
Основой для разработки коммутаторов послужила технология сетевого моста, которая подразумевают последовательную передачу пакетов информации. Коммутаторы, как устройства следующего поколения, обеспечивают одновременную передачу пакетов данных для всех своих портов.
Принцип функционирования коммутатора
Принцип работы коммутатора основывается на заполнении логической матрицы MAC-адресами в контентно-адресуемой памяти устройства. Каждый из адресов соответствует определенному узлу сети и ему назначается отдельный порт коммутации. Для того чтобы заполнить матрицу MAC-адресами, при первом включении устройство отправляет входящие на один из портов фреймы (или их еще называют «кадры») с данными на все остальные существующие порты. После анализа всех фреймов, коммутатор заполняет таблицу MAC-адресами хостов сети и локализует трафик.
Типология коммутаторов
Коммутаторы подразделяются по степени управляемости:
Неуправляемые коммутаторы – устройства, независимо управляющие передачей пакетов с данными, без вмешательства пользователя. Такие модели подойдут для домашнего использования и для небольших компаний. Недостаток неуправляемых коммутаторов – небольшая производительность, которая затрудняет администрирование сети и существенно ограничивает их использование.
Управляемые коммутаторы – это модели коммутаторов, поддерживающие помимо автономного режима работы еще и пользовательское управление. Данная функция упрощает администрирование сети и увеличивает производительность устройства по сравнению с неуправляемыми аналогами. Такие коммутаторы подходят для установки на больших предприятиях, обеспечивая стабильную и быструю работу компьютерной сети.
Классификация коммутационных устройств по уровням OSI:
2 уровень - коммутаторы. Обеспечивается работа только в одном сегменте локальной сети (Ethernet) с MAC-адресами хостов. IP-адреса не поддерживаются.
3 уровень - маршрутизаторы. Устройства обладают бóльшими возможностями и поддерживают сетевые протоколы IPv4, IPv6, IPX и др., опознавание IP-адресов и сетевые протоколы типа PPTP, PPPoE, VPN и др.
4 уровень - маршрутизаторы с расширенным функционалом. Такие устройства идентифицируют трафик приложений благодаря опознаванию IP-адресов, битов SYN/FIN и портов протоколов TCP/UDP. Подобные коммутаторы самостоятельно перенаправляют сетевой трафик исходя из анализа входных данных.
По способу коммутации:
Store-and-Forward – коммутатор с промежуточным хранением данных, то есть устройство полностью считывает фрейм. При отсутствии ошибок устройство отсылает фрейм по выбранному порту.
Cut-through – коммутатор со сквозной передачей данных. Такие модели уменьшают задержку за счет того, что коммутатор прочитывает адрес фрейма и сразу же отсылает его. В таком случае проверка на присутствие ошибок не производится.
Fragment-free – коммутатор с бесфрагментной передачей данных, осуществляет фильтрацию фрагментов коллизий первых 64 байтов фрейма и затем выполняет сквозную коммутацию. Такой режим также называется гибридным.
По ширине полосы пропускания каждого порта:
Ассиметричные коммутаторы, комбинирующие в одном устройстве порты с разной пропускной способностью, используются для сетевых потоков типа клиент-сервер.
Симметричные коммутаторы содержат порты только с идентичной пропускной способностью.
Выбор коммутатора
Прежде чем купить подходящий коммутатор, необходимо составить план будущей сети и определиться с ее основными характеристиками. Рекомендуется обратить более пристальное внимание на следующие критерии.
Количество портов. Рекомендуется выбирать коммутатор с некоторым запасом, если в будущем планируется расширение сети.
Скорость передачи данных каждого из портов может варьироваться в зависимости от модели. Исходя из нее, вычисляется пропускная способность коммутатора – максимальный объем трафика, проходящий через устройство за единицу времени, путем перемножения количества портов на скорость передачи данных. Если получившееся число больше заявленной производителем внутренней широты пропускания, то такое коммутационное устройство не справится с большими нагрузками сети.
Немаловажен размер матрицы MAC-адресов, если она небольшая, то адреса будут перезаписываться, а скорость приема и отправки данных уменьшится.
При работе с трафиком коммутатор может предусматривать встроенную функцию управления потоком для осуществления передачи данных без потерь в условиях высокой нагрузки на сеть. Для гигабитных сетей могут понадобиться расширенные пакеты Jumbo Frame, которые способны увеличить производительность сети до 300 процентов.
Практически все коммутационные устройства автоматически согласуют полудуплексный и полнодуплексный режимы, что позволяет обойти ряд проблем при эксплуатации устройств с разными режимами. Для ЛВС, в которых трафик будет состоять по большей части из медиафайлов, необходима функция приоритизации трафика (стандарт IEEE 802.1p). Если есть необходимость в дроблении сети на несколько частей, то в таком случае будет важно наличие поддержки VLAN (стандарт IEEE 802.1q).
Если планируется стекирование коммутаторов, или соединение нескольких коммутаторов в единый модуль, то лучше отдать предпочтение устройству с наибольшим количеством портов.
Обычно современные устройства также обладают функциями диагностики кабеля, защиты от вирусного трафика, энергосбережения, которые позволяют защитить коммутатор от перегрузок, зависаний и других неполадок.
В каталоге Интернет-магазина «Маринэк» представлен широкий выбор промышленных коммутаторов производства LG-ERICSSON, а также различное сетевое оборудование, включающее в себя Wi-Fi-роутеры, маршрутизаторы и сетевые коммутаторы. Специалисты «Маринэк» проконсультируют вас при выборе и помогут купить подходящее для вас устройство. Вас также может заинтересовать весьма популярный производитель сетевого оборудования MikroTik, предлагающий недорогие сетевые устройства с широкими возможностями создания гибкой IT-инфраструктуры.
landcomm.ru
Чем отличается коммутатор от маршрутизатора, свитч от роутера?
Для связи электронных устройств пользуются разными методами. На фирмах, предприятиях, в организациях, корпорациях этими вопросами профессионально занимаются системные администраторы.
Но что делать обычным пользователям, когда нужно выбрать один из аппаратов, чтобы создать связующую информационную сеть? Обычным людям незнакомы даже термины, которые используют при подборе оборудования, названия разной техники, неизвестны функциональность, предназначение. Естественно, разница между ними есть и колоссальная, поэтому стоит разобраться, что такое:
Сетевые устройства мало отличаются внешним исполнением, представлены компактными коробочками с портами и соединителями. Но наделены разносторонними характеристиками, их используют для достижения разных целей. Каждое оборудование вносит свою лепту в построение компьютерных сетей.
Что такое коммутатор (свитч)?
Концентраторы уже давно признаны настолько примитивными и морально устаревшими, неспособными самостоятельно выявить конечного адресата, что их давно заменили высокорезультативными коммутаторами, которые справляются с анализом данных в высокоскоростном режиме. Это главные отличительные свойства, которые присущи приборам, именуемым еще свитчами.
Смысл применения оборудования с мостовыми технологиями: коммутатор «роднит» между собой внутри одной локальной сети разные узлы в заданном количестве (принтеры, компьютеры и др.) и организует обмен данными исключительно между ними, большее ему не под силу.
Преимущества:
повышенная производительность;
высокая безопасность;
ненужно перерабатывать лишнюю информацию.
Разновидности коммутаторов:
управляемые: сложно устроенные, со вспомогательным функционалом, управление коммутацией – канальный уровень модели OSI;
неуправляемые: просто устроенные.
Принцип работы коммутатора
Таблицы коммутации содержат сведения, которые помогают уточнить, каким портам свитча соответствует каждый MAC-адрес узлов. Все это сосредоточено в его памяти. Когда свитч включают, в таблице ничего нет. Он обучаемый и продолжает работать в этом режиме, анализируя информационный поток и заполняя таблицу MAC-адресами компьютеров, с которых отправлены пакеты данных.
Сначала, данные, которые поступили на один порт, доступны всем портам. Позже, свитч разбирается и понимает, какому узлу определен поступивший на один из его портов пакет данных, и отправляет его нужному адресату. В процессе обучения коммутатор создает полноценную таблицу коммутации с учетом всех портов, чтобы локализовать трафик.
Что такое маршрутизатор (роутер)?
Связывает между собой несколько разных сетей и позволяет проводить обмен информацией. Роутер маршрутизирует трафик. Передача данных происходит не только между компьютерами в пределах одной домашней или рабочей сети, в отличие от коммутатора маршрутизаторы рассылают пакеты данных между рабочей сетью и провайдера, например.
Благодаря роутеру движение сетевого трафика происходит по четко заданному маршруту за счет IP-адресов.
Преимущества:
информационные потоки налажены среди всех узлов в одном сегменте сети;
передача данных между несколькими сегментами сетей: интернетом и локальной сетью.
Говоря о маршрутизаторе, подразумевают несколько разновидностей, пользователи выбирают наиболее оптимальное решение для себя:
Принцип работы маршрутизатора
У всех роутеров, независимо от отличительных свойств, индивидуальных особенностей, принцип работы идентичен. Получают информацию из локальной сети или интернета, анализируют ее и отправляют конкретному получателю. С технологией Wi-Fi роутер раздает интернет в одно время многим узлам: ноутбуки, компьютеры, смартфоны, телевизоры, планшеты, игровые приставки и т.д., хотя подача интернета происходит только по одному кабелю LAN.
Данные адресату маршрутизаторы направляют, используя таблицу маршрутизации. Выбирают самый надежный и качественный путь. В электронной базе данных хранится сетевой маршрут к любому устройству в сети, а также другим аппаратам, поэтому есть связь и между маршрутизаторами. Каждый известный им адрес маршрутизаторы регулярно тестируют, чтобы понимать, работает еще устройство или уже отключено, и как быстро оно принимает пакет данных.
Отличие коммутатора от маршрутизатора простыми словами
Они решают задачи в разной плоскости. Коммутатор и маршрутизатор имеют много общего, но и достаточно разные:
свитч гораздо проще с технической точки зрения с ограниченной функциональностью;
маршрутизаторы сложней устроены, могут анализировать объем информации, определяют IP-адреса;
отличие любого коммутатора – работа исключительно с MAC-адресами;
маршрутизаторам свойственен сетевой уровень модели OSI;
маршрутизаторы от свитчей отличаются подключением к интернету;
для работы коммутатора и маршрутизатора нужен порт LAN, но последнее устройство еще использует и WAN-порт;
присматривая коммутатор или маршрутизатор, обращают внимание не только на функциональные возможности, но и стоимость, поскольку коммутаторы гораздо проще и дешевле.
Гораздо легче увидеть разницу и понять, что нужно купить в каждом конкретном случае, после рассмотрения свойств, особенностей, возможностей коммутатора и маршрутизатора, поскольку их функционал отличается. Чтобы настроить элементарное соединение между несколькими компьютерами, достаточно и свитча. С роутером получится подключить каждый узел к сети интернет.
galtsystems.com
Коммутация (компьютерные сети) — Википедия
У этого термина существуют и другие значения, см. Коммутация.
Коммута́ция в компьютерной сети — процесс соединения абонентов такой сети через транзитные узлы. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи, которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.
Каждый абонент соединен с коммутаторами индивидуальной линией связи, закрепленной за этим абонентом. Линии связи, протянутые между коммутаторами, разделяются несколькими абонентами, то есть используются совместно.
Коммутация по праву считается одной из самых популярных современных технологий. Коммутаторы по всему фронту теснят мосты и маршрутизаторы, оставляя за последними только организацию связи через глобальную сеть. Популярность коммутаторов обусловлена прежде всего тем, что они позволяют за счет сегментации повысить производительность сети. Помимо разделения сети на мелкие сегменты, коммутаторы дают возможность создавать логические сети и легко перегруппировывать устройства в них. Иными словами, коммутаторы позволяют создавать виртуальные сети.
В 1994 году компания IDC дала своё определение коммутатора локальных сетей: коммутатор — это устройство, конструктивно выполненное в виде сетевого концентратора и действующее как высокоскоростной многопортовый мост; встроенный механизм коммутации позволяет осуществить сегментирование локальной сети, а также выделить полосу пропускания конечным станциям в сети.
Впервые коммутаторы появились в конце 1980-х годов. Первые коммутаторы использовались для перераспределения пропускной способности и, соответственно, повышения производительности сети. Можно сказать, что коммутаторы первоначально применялись исключительно для сегментации сети. В наше время произошла переориентация, и теперь в большинстве случаев коммутаторы используются для прямого подключения к конечным станциям.
Широкое применение коммутаторов значительно повысило эффективность использования сети за счет равномерного распределения полосы пропускания между пользователями и приложениями. Несмотря на то, что первоначальная стоимость была довольно высока, тем не менее они были значительно дешевле и проще в настройке и использовании, чем маршрутизаторы. Широкое распространение коммутаторов на уровне рабочих групп можно объяснить тем, что коммутаторы позволяют повысить отдачу от уже существующей сети. При этом для повышения производительности всей сети не нужно менять существующую кабельную систему и оборудование конечных пользователей.
Общий термин коммутация применяется для четырёх различных технологий:
конфигурационная коммутация,
коммутация кадров,
коммутация ячеек,
преобразование между кадрами и ячейками.
В основе конфигурационной коммутации лежит нахождение соответствия между конкретным портом коммутатора и определенным сегментом сети. Это соответствие может программно настраиваться при подключении или перемещении пользователей в сети.
При коммутации кадров используются кадры сетей Ethernet, Token Ring и т. д. Кадр при поступлении в сеть обрабатывается первым коммутатором на его пути. Под термином обработка понимается вся совокупность действий, производимых коммутатором для определения своего выходного порта, на который необходимо направить данный кадр. После обработки он передается далее по сети следующему коммутатору или непосредственно получателю.
В технологии АТМ также применяется коммутация, но в ней единицы коммутации носят название ячеек. Преобразование между кадрами и ячейками позволяет станциям в сети Ethernet, Token Ring и т. д. непосредственно взаимодействовать с устройствами АТМ. Эта технология применяется при эмуляции локальной сети.
Коммутаторы делятся на четыре категории:
Простые автономные коммутаторы сетей рабочих групп позволяют некоторым сетевым устройствам или сегментам обмениваться информацией с максимальной для данной кабельной системы скоростью. Они могут выполнять роль мостов для связи с другими сетевыми сегментами, но не транслируют протоколы и не обеспечивают повышенную пропускную способность с отдельными выделенными устройствами, такими как серверы.
Коммутаторы рабочих групп второй категории обеспечивают высокоскоростную связь одного или нескольких портов с сервером или базовой станцией.
Коммутаторы сети отдела предприятия, которые часто используются для взаимодействия сетей рабочих групп. Они представляют более широкие возможности администрирования и повышения производительности сети. Такие устройства поддерживают древовидную архитектуру связей, которая используется для передачи информации по резервным каналам и фильтрации пакетов. Физически такие коммутаторы поддерживают резервные источники питания и позволяют оперативно менять модули.
Коммутаторы сети масштаба предприятия, выполняющие диспетчеризацию трафика, определяя наиболее эффективный маршрут. Они могут поддерживать большое количество логических соединений сети. Многие производители корпоративных коммутаторов предлагают в составе своих изделий модули АТМ. Эти коммутаторы осуществляют трансляцию протоколов Ethernet в протоколы АТМ.
Существует четыре принципиально различные схемы коммутации абонентов в сетях:
Коммутация каналов (КК, circuit switching) — организация составного канала через несколько транзитных узлов из нескольких последовательно «соединённых» каналов на время передачи сообщения (оперативная коммутация) или на более длительный срок (постоянная/долговременная коммутация — время коммутации определяется административно).
Коммутация сообщений (КС, message switching) — разбиение информации на сообщения, которые передаются последовательно к ближайшему транзитному узлу, который, приняв сообщение, запоминает его и передаёт далее сам таким же образом. Получается нечто вроде конвейера. Данные могут задерживаться на узлах до тех пор, пока не появится рабочее соединение.
Коммутация пакетов (КП, packet switching) — разбиение сообщения на «пакеты», которые передаются отдельно. Разница между сообщением и пакетом: размер пакета ограничен технически, сообщения — логически. При этом, если маршрут пакетов между узлами определён заранее, говорят о виртуальном канале (с установлением соединения). Пример: коммутация IP-пакетов. Если же для каждого пакета задача нахождения пути решается заново, говорят о датаграммном (без установления соединения) способе пакетной коммутации.
Коммутация ячеек (КЯ, cell switching) — частный случай коммутации пакетов с эмуляцией виртуальных каналов (см. X.25, Frame Relay, MPLS), при коммутации ячеек пакеты всегда имеют фиксированный и относительно небольшой размер (см. Asynchronous Trasnfer Mode).
В сети могут использоваться несколько видов коммутации. Например, в сети с системой передачи ПЦИ (PDH) / СЦИ (SDH) для реализации КЯ используется КК, сама же КЯ служит для передачи и коммутации пакетов, которые, в свою очередь, несут в себе сообщения, то есть, в терминах уровневой системы, первым, физическим уровнем является система передачи данных плезиохронной или синхронной иерархии. Следующий уровень — коммутация каналов, затем ячеек — АТМ, над ней коммутация пакетов по протоколам TCP/IP, и на основе всего этого реализуется прикладной уровень, например, служба электронной почты по протоколу SMTP.
Коммутация в городских телефонных сетях[править | править код]
Городская телефонная сеть — это совокупность линейных и станционных сооружений. Сеть, имеющая одну АТС, называется нерайонированной. Линейные сооружения такой сети состоят только из абонентских линий. Типовое значение ёмкости такой сети 8-10 тысяч абонентов. При больших ёмкостях из-за резкого увеличения длины АЛ целесообразно переходить на районированное построение сети. В этом случае территория города делится на районы, в каждом из которых сооружается одна районная АТС (РАТС), к которой подключаются абоненты этого района. Соединения абонентов одного района осуществляется через одну РАТС, абонентов разных РATC — через две. РАТС связываются между собой соединительными линиями в общем случае по принципу «каждая с каждой». Общее число пучков между РАТС равно количество РАТС/2. При возрастании ёмкости сети число пучков СЛ, связывающих РATC между собой по принципу «каждая с каждой», начинает резко расти, что приводит к чрезмерному возрастанию расхода кабеля и затрат на организацию связи и Поэтому при ёмкостях сети свыше 80 тысяч абонентов применяют дополнительный коммутационный узел. На такой сети связь между АТС разных районов осуществляется через узлы входящего сообщения (УВС), а связь внутри своего узлового района (УР осуществляется по принципу «каждая с каждой» или через свой УВС. 1