Ключ к знанию

Проверка лямбда зонда осциллографом


Проверка датчика кислорода с помощью осциллографа.

Проверка датчика кислорода с помощью осциллографа.

Датчик кислорода устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах. Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик генерирует сигнал высокого уровня напряжением 0,65…1,0V. При поступлении сигнала высокого уровня от датчика кислорода, блок управления двигателем начинает уменьшать длительность впрыска топлива, тем самым обедняя топливо-воздушную смесь. Когда двигатель работает на обеднённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах повышен, при этом датчик генерирует сигнал низкого уровня напряжением 40…200mV. При поступлении сигнала низкого уровня от датчика кислорода, блок управления двигателем начинает увеличивать длительность впрыска топлива, тем самым обогащая топливо-воздушную смесь. Таким образом, по сигналу от датчика кислорода блок управления двигателем корректирует длительность впрыска топлива так, что состав топливо-воздушной смеси оказывается максимально близким к стехиометрическому (идеальное соотношение воздух/топливо).

Исправный датчик кислорода начинает работать только после прогрева чувствительного элемента до температуры не ниже 350°С. Существуют одно-, двух-, трёх- и четырёх-проводные двухуровневые циркониевые датчики кислорода BOSCH. Одно- и двух-проводные датчики кислорода устанавливаются в выпускном коллекторе двигателя максимально близко к выпускным клапанам газораспределительного механизма и прогреваются до рабочей температуры за счёт высокой температуры отработавших газов. Трёх- и четырёх-проводные датчики кислорода прогреваются до рабочей температуры за счёт встроенного электрического нагревательного элемента и могут быть установлены на значительном расстоянии от выпускных клапанов газораспределительного механизма двигателя.

При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV. Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала датчика кислорода.

Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала составляет ~1,2Hz.

Проверка выходного сигнала датчика.

Измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно сигнальной “массы” датчика. Сигнальная “масса” двух- и четырёх-проводных датчиков кислорода BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная “масса” одно- и трёх- датчиков кислорода BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с “массой” автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная “масса” датчика кислорода в большинстве случаев так же соединена с “массой” автомобиля. Встречаются блоки управления двигателем, где провод сигнальной “массы” датчика кислорода подключен не к “массе” автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной “массы” датчика кислорода.

Для просмотра осциллограммы напряжения выходного сигнала датчика кислорода, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов №1-4 USB Autoscope II, чёрный зажим типа “крокодил” осциллографического щупа должен быть подсоединён к “массе” двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика).

Схема подключения к датчику кислорода BOSCH (на основе оксида циркония).
1 – точка подключения чёрного зажима типа “крокодил” осциллографического щупа;
2 – точка подключения пробника осциллографического щупа.

В окне программы “USB Осциллограф”, необходимо выбрать подходящий режим отображения, в данном случае “Управление => Загрузить настройки пользователя => Lambda”.

Когда лямбда-зонд прогревается до рабочей температуры, его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В большинстве блоков управления двигателем, значение опорного напряжения равно 450mV. Такой блок управления двигателем считает датчик кислорода готовым к работе только после того, как вследствие прогрева датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150…250mV.

Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Пуск прогретого до рабочей температуры двигателя. Время прогрева лямбда-зонда до рабочей температуры равно ~30S.

Опорное напряжение на сигнальном проводе датчика кислорода некоторых блоков управления двигателем может иметь другое значение. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V.

Типовые неисправности.

Низкая частота переключения выходного сигнала датчика кислорода указывает на увеличенный диапазон отклонения состава топливо-воздушной смеси от стехиометрического.

Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет ~0,6Hz.

Снижение частоты переключения выходного сигнала датчика кислорода может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере “приёмистости” двигателя.

Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление датчика кислорода снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала датчика кислорода уменьшается. Стареющий датчик кислорода легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий датчик кислорода всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.

Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют.

Напряжение выходного сигнала стареющего датчика кислорода при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.

 

Поделиться ссылкой:

Похожие статьи

almarka.ru

Skoda Fabia › Бортжурнал › Диагностика автомобиля Фабия 1.4 86 л.с. CGGB. Часть 2. Снятие осциллограммы кислородного датчика. Проверка кислородного датчика 2 после катализатора (лямба-зонда). Как прозвонить провода?

Прошлый раз написал о том, как проверить кислородный датчик (лямбда-зонд). В этом раз поговорим о том как снять осциллограмму датчика. О проверке второго кислородного датчика после катализатора, как тестировать проводку и проверке датчиков со стороны блока управления двигателем.

Раньше многие датчики и исполнительные элементы делались с использованием обмоток внутри датчика. И их можно было проверить, прозвонив и/или измерив сопротивление датчика, сравнивая полученные данные с заводскими характеристиками. Многие современные датчики используют эффект Холла и их нельзя прозвонить. Для того, чтобы сделать вывод о работоспособности датчика с него снимают осциллограмму и сравнивают ее диаграмму с табличными значениями. Осциллограмма кислородного датчика позволяет понять насколько быстро реагирует датчик на различные изменения параметров топливно-воздушной смеси. Новому датчику для этого необходимо несколько миллисекунд, в то же время как умирающий датчик может реагировать, подвисая.

Можно проверить работоспособность датчика мультиметром. К сожалению, мультиметр не в состоянии показать нам скорость реакции датчика, осциллограф работает, измеряя показания в миллисекундах.

Как диагностировать автомобиль шкода. Снятие осциллограммы кислородного датчика. Двухканальный осциллограф DiSco 2

Для снятия осциллограммы с кислородного датчика (лямба-зонд) 1 (до катализатора), мы подключаем плюсовой щуп к выходу из разъема 4 и минусовой щуп к выходу из разъема 3. Для снятия использовал двухканальный осциллограф DISCO 2.0.

Полный размер

Как диагностировать автомобиль шкода. Снятие осциллограммы кислородного датчика.

Для удобства подсоединения сделал специальные щупы, которые позволяют подключаться к разъему не разрывая штатную проводку. С одной стороны обычная швейная игла с припаянным к ней проводом, с другой припаян винт, что можно было легко подсоединиться к штатному шнуру осциллографа. Ну, и естественно, чтобы избежать короткого замыкания, все соединения запаяны в термоусадку. Работая с электрикой нужно соблюдать банальные меры безопасности. Мне знакомы случаи, когда в результате короткого замыкания вспыхивали автомобили или сгорали дорогие блоки управления, при этом ответственный за это предохранитель, легко переживал шок.

Полный размер

Как диагностировать автомобиль шкода. Самодельные щупы для осциллографа, чтобы подключаться к разъемам автомобиля не вскрывая проводку (провода)

Подключаемся и видим, что датчик работает в норме, корректируя топливовоздушную смесь от 0,1V до 0,9V. Очень быстро реагируя на педаль акселератора.

Полный размер

Как диагностировать автомобиль шкода. Осциллограмма кислородного датчика перед катализатором с использованием двухканального осциллографа DiSco.

При резком нажатии на педаль акселератора (газа) мы видим, как кислородный датчик, резко реагирует на изменения.

Полный размер

Как диагностировать автомобиль шкода? Осциллограмма датчика кислорода №1 (лямбда-зонд) до катализатора. Реакция на резкое нажатие на педаль акселератора.

Посмотреть график осциллограммы можно и используя диагностическое оборудование. Например, Вася Диагност, VCDS или ELM327.

Как посмотреть график работы кислородного датчика (лямбда-зонд) в программе Вася Диагност?

Открываете программу. ----> Нажимаете на кнопку "Список блоков управления". ----> Заходите блок управления двигателем "01 — Электроника двигателя". ----> Нажимаете на кнопку "Измеряемые величины". ----> Вводите в окне "Группа" — значение "033" и у вас появляются значения работающего кислородного датчика (лямбда-зонда). ----> Дальше нажимаете на кнопку "Графики" и вам выводится вот такое окно. Где желтая кривая — график работы кислородного датчика.

Полный размер

Как диагностировать автомобиль шкода? Проверка кислородного датчика (лямбда-зонд) с помощью программы VCDS или ВАСЯ ДИАГНОСТ на шкода фабия 1,4 (CGGB).

Такие же графики может нарисовать Carista, Torque и другие т.п. программы, работающие с прибором ELM327. В настройках программы вы сможете это найти в меню "Запись и выгрузка журналов".

В любом случае, по мне лучше подключение осциллографа, т.к. он более оперативно реагирует на изменения и вы их видите в режиме реального времени. Но в любом случае эти программы могут продемонстрировать насколько работоспособен ваш датчик.

Полный размер

Как диагностировать автомобиль шкода? Инструкция по тесту кислородного датчика (лямбда-зонда) в программе VCDS ВАСЯ ДИАГНОСТ. Пошаговый алгоритм работы в программе, чтобы посмотреть график работы кислородного датчика.

________________________________________________________________

ВТОРОЙ КИСЛОРОДНЫЙ ДАТЧИК (диагностика и проверки).

На всех автомобилях, начиная с ЕВРО3, кислородные датчики устанавливаются также после катализатора.

Второй кислородный датчик (Лямбда 2) на двигателе CGGB имеет следующий артикул — 036906262D аналоги Denso DOX-1560, NGK 0435. Высокотемпературная смазка для установки датчика G052112A3.

Как диагностировать автомобиль шкода? Базовые осциллограммы кислородных датчиков (до катализатора 1 и после 2).

Настройки для диаграмм осциллограмм для первого датчика 2V50 мс, для второго 5V50 мс.

Универсальные датчики (артикулы совпадают с датчиком 1) BOSCH 0 258 986 602, DENSO DOX-0119,

www.drive2.ru

Lada Largus › Logbook › Осциллограмма датчика кислорода Ларгус. Проверка лямбда

Пришло время опробывать оциллографом Автоас-экспресс 2, проверить датчики кислорода.

Датчик кислорода (лямбда зонд) устанавливается в потоке отработавших газов двигателя и измеряет уровень содержания кислорода в них.

Бывают:
1) на основе оксида циркония генерирует выходной сигнал напряжением от 40-100 МВ до 0.7-1.0 В.
2) На основе оксида титана напряжением выходного сигнала от 10-100 МВ до 4-5 В.
3) Широкополосный

Первый датчик кислорода установлен в резьбовое отверстие выпускного коллектора. Второй датчик после каталитического нейтрализатора. Ориентируясь на сигнал первого датчика, ЭБУ корректирует подачу топлива.
Ориентируясь на сигнал второго датчика, ЭБУ оценивает эффективность работы каталитического нейтрализатора.

Постоянно отслеживая напряжение сигнала датчика, блок управления корректирует количество впрыскиваемого форсунками топлива. При низком уровне сигнала датчика (бедная топливовоздушная смесь) количество подаваемого топлива увеличивается, при высоком уровне сигнала (богатая смесь) — уменьшается.

На первый датчик кислорода приходят 4 провода. Два контакта это нагревательный элемент, их можно проверить на сопротивление, норма 4-30 Ом. У меня показало 3,5 Ом. Третий провод сигнальный. Четвертый масса.

Zoom

Подключаем игольчатый адаптер оциллографа к сигнальному проводу и массу на АКБ. И видим осциллограмму. Датчик кислорода проверяется на 2000-3000 оборотах двигателя. На исправном датчике за 10 секунд на 2000-3000 оборотах должно быть не менее 8 изменений показаний.

Zoom

Zoom

Разность потенциалов изменяется приблизительно от 0.1 В (высокое содержание кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь). Тоесть он должен подниматься выше 0.8 и опускаться ниже 0,2 Вольта. Если сигнал выше 1 В, то выйдет ошибка по датчику, так как исправный датчик физически не может давать такой сигнал.

Второй датчик кислорода, после катализатора.
При проверке производительности каталитического нейтрализатора сравнивают данные кислородного датчика до и после каталитического нейтрализатора. Сравнение проводят по содержанию кислорода в цепи и драгоценных металлов в тонком покрытии. В нормальном состоянии, при замкнутом контуре управления, в высокопроизводительных нейтрализаторах содержится достаточно кислорода.
В результате этого по сравнению с частотой и амплитудой колебаний напряжения переднего подогреваемого кислородного датчика частота и амплитуда колебаний напряжения заднего подогреваемого кислородного датчика снижаются.
По мере ухудшения производительности каталитического нейтрализатора в результате перегрева и разрушения вследствие химических реакций в нем снижается количество кислорода. Напряжение заднего кислородного датчика начинает колебаться с большей частотой и амплитудой, значения которых приближаются к значениям переднего датчика.

www.drive2.com

Как проверить Лямбда-зонд — DRIVE2

После нашей первой публикации Сам себе диагност: Как проверить датчик массового расхода воздуха на почту и прочие средства обратной связи стали сыпаться вопросы о датчике лямбда-зонд. Два вопроса, которые задавали машиновладельцы, как проверить датчик (самому не имея сложных инструментов для диагностики) и какие формы сигнала он индуцирует.

С этими серьезными вопросами разбирался Б. Миша.

Анимация — принцип работы системы с лямбда-зондом
(положительный потенциал на сигнальном проводе датчика напрямую зависит от разности количества кислорода в выхлопной трубе и количестве кислорода, окружающего выхлопную систему)

Прежде чем начать рассказывать о датчике кислорода, стоит отметить, что статья не претендует на мануал по диагностике датчика лямбда-зонд, однако направлена на то, чтобы понять принципы работы этого устройства и сформировать достаточное представление о форме сигнала кислородного датчика.

Датчик лямбда-зонд часто называют кислородным датчиком по той простой причине, что выходной сигнал датчика зависит от содержания кислорода в выхлопных газах автомобиля. Именно содержание кислорода, а не что-то еще. По содержанию кислорода в выхлопе можно судить о долях топлива и воздуха в смеси, которая подается в цилиндры. Для справки, известно, что воздушно-топливная смесь полностью сгорает, только при условии, если в смеси будет содержаться 14,7 частей воздуха и 1 часть топлива соответственно. Если же топлива будет больше, то часть углеводородов полностью так и не окислиться (горение — это и есть окисление. А для окисления нужен кислород. В богатой смеси, для полного окисления, кислорода не хватает), либо окислиться в катализаторе — такая смесь считается богатой (первые признаки — черные закопченные свечи). Если же смесь бедная, то в выхлопных газах обязательно будет присутствовать избыточное количество кислорода, который, кстати, так и не вступил в реакцию окисления топлива. Именно для такого точного расчета состава топливно-воздушной смеси и нужен лямбда-зонд в автомобиле.

Кислородные датчики я разделил на 2 типа — широкополосный лямбда зонд и обычные 2х уровневые датчики с 1, 2х, 3х и 4х жильными электрическими разъемами. Широкополосные кислородники в этой статье рассмотрены не будут. Если у 2х уровневого типа лямбда-зондов на выходе индуцируется сигнал относительно простой формы и уровень этого сигнала дает представление о содержании кислорода в выхлопных газах, то широкополосный лямбда-зонд, плюс ко всему, дает еще и информацию о численном значении смеси и требует от диагноста не только большего познания, но и специального оборудования.

Второй тип датчиков можно встретить на большинстве павлодарских машин. Однако за широкополосниками будущее, и они постепенно вытеснят примитивные 2х уровневые лямбда-зонды вовсе. (Скажу больше, не в обиду нашим автовладельцам, уже давно вытеснили. Только у нас такие машины недавно стали появляться и основная масса автопарка все же машины со старыми евро нормами по выбросам и токсичности).

Исправный и прогретый датчик лямбда-зонд

В свою очередь примитивные 2х уровневые датчики кислорода я разделил на 2 вида — датчики на основе оксида циркония и оксида титана. Я не случайно сделал такое деление по типам и видам. Дело в том, что у каждого типа и вида лямбда-зонда своя форма выходного сигнала. Например, лямбда-зонд на основе оксида циркония индуцирует на своем сигнальном проводе положительный потенциал разностью с массой автомобиля от 0,1 до 1 Вольт, а датчики на основе оксида титана уже дают разность потенциалов от 0,1 до 5 Вольт.

В идеале, для точной проверки формы сигнала с датчика, к примеру, из оксида циркония, нужен осциллограф. Сигнал с лямбда-зонда будет представлять собой волнообразную кривую, которая изменяется по времени от 0 до 1В, а если же датчик из оксида титана, то изменения будут уже от 0 до 5 вольт, но все той же волнообразной формы. На исправной лямбде сигнал будет меняться довольно часто. Если измерять напряжение вольтметром, то примерно 2-3 раза в секунду (не забывайте о том, что приборы по чувствительности разные). Однако, это можно узреть только на полностью прогретом датчике. Сигнал, на холодном датчике, меняет свою форму очень "неохотно" и больше похож на прямую, которая время от времени изменяется на небольшую величину и по мере прогрева сменяется все чаще и чаще.

Не прогретый лямбда-зонд

В результате проверки нашего датчика лямбда-зонда осциллографом и вольтметром мы опровергли несколько гаражных баек, которые можно услышать в реальности или прочитать на форумах в интернете.

Первая байка — это обогащение смеси при нагрузке на двигатель, например, когда автомобиль двигается в гору. Это действительно просто байка. Благодаря лямбда-зонду смесь корректируется постоянно и программа контроллера все время пытается держать ее на среднем значении 14 к 1. По другому и быть не может, иначе зачем выбрасывать в атмосферу несгоревшие углеводороды?

Вторая байка — это показание в 1 Вольт на непрогретой лямбде и якобы замкнутости ее внутренней цепи. Это действительно вымысел и как утверждают специалисты и подтвердили мы (просто любители поковыряться) на непрогретом лямбда-зонде сигнал сменяется очень медленно и зависит больше от обогащения смеси (видимо по показаниям датчика температуры охлаждающей жидкости).

Однако третья байка про обеднение смеси, когда автомобиль движется вниз с горы, оказалась и вовсе не байка. Если верить показаниям вольтметра, то можно смело заявлять, что это действительно так — вольтметр показал 0, а это свидетельствует о том, что количество кислорода в выхлопной системе автомобиле равно количеству кислорода окружающего эту же систему выхлопа.

Вам это о чем-либо говорит? Удачи на дорогах ;)

pavlodarauto.kz/info/view.php?id=90

www.drive2.ru

Автомобильный осциллограф для диагностики автомобиля

Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.

Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

Преимущества
  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки
  • Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
  • Подключения на любое расстояние по кабелю RJ 45.
  • Качество картинки при диагностике, что не маловажно при работе.
  • Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

Диагностика осциллографом автомобиля: как проводить

Пользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика.

Проверка датчиков осциллографом

ДПКВ

Датчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт.

Исправный ДПКВ

Методика измерения

  1. Подключаем измерительный щуп к сигнальному проводу осциллографа.
  2. Ставим диапазон измерения до 300-500 вольт.
  3. Нажимаем кнопку пуск и снимаем сигнал.
ДПРВ

Датчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.

 

Нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
ДМРВ

Датчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение.

Исправный ДМРВ. Нулевое напряжения равно 0,996 вольт и скорость выхода на рабочий диапазон 0,5 мс.

Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.

 

Неисправный дмрв

Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее.

Сигнал напряжения ДМРВ под нагрузкой

Работа с автомобильным осциллографом не страшна для начинающих диагностов.  Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей.

ДПДЗ

Датчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков.

Исправный датчик положения дроссельной заслонкиНеисправный датчик положения дроссельной заслонки

Проверка массы двигателя осциллографом

Плохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе.

Хорошая масса

Диагностика катушек зажигания с помощью осциллографа  

Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом.

Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме.

Типичные неисправности системы зажигания
Межвитковое замыкание в первичной цепи катушкиПробой высоковольтного проводаСвеча в сажеСлишком большое время накопления катушки. Дефект в электронном блоке управления двигателем.
Проверка индивидуальных катушек зажигания

Для диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше.

Диагностика топливной форсунки осциллографом

Форсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом.

Исправная форсункаНеисправная форсунка

Диагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров.

Проверка датчика кислорода с применением осциллографа

Лямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси.

Проверить работу датчика можно

  • Сканером
  • Осциллографом

Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи.

Неисправный датчик кислорода. Скорость реакции медленнаяДатчик кислорода полностью неисправен

Скрипт CSS Андрея Шульгина

Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.

Порядок записи сигнала применительно к осциллографу USB Autoscope:

  1. Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
  2. Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
  3. Запустить двигатель и дать работать на холостом ходу.
  4. Активировать скрипт CSS
  5. Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
  6. Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
  7. Остановить скрипт.

Анализ теста Андрея Шульгина

  1. Нажать кнопку «Выполнить скрипт»
  2. Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
  3. Анализируем полученную картинку.
График скрипта CSS
  • Холостой ход — снижена эффективность 3 цилиндра.8.
  • Низкая компрессия в 3 цилиндре.

Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.

Порядок проведения теста эффективности на осциллографе Мотодок 3

Порядок снятия скрипта аналогичный USB Autoscope:

Анализ осциллограммы давления в цилиндре

Для снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C

Порядок проведения теста:

  1. Датчик давления вкрутить вместо свечи. Высоковольтный провод проверяемого цилиндра соединить с разрядником и подключить к нему датчик синхронизации первого цилиндра.
  2. Выключить форсунку в проверяемом цилиндре.
  3. Запустить прибор.
  4. Завезти двигатель и дать работать на холостых оборотах.
  5. Получить осциллограмму давления синхронизированную по ВМТ 0°C, как показано ниже.
Выпускной клапан открывается на 160° — метка смещена

Важно проанализировать две точки на осциллограмме:

  1. Момент открытия выпускного клапана. На моторах без фазовращателей значение 140-145°, с фазовращателями порядка 160°.
  2. Момент перекрытия, когда выпускной и впускной клапана открыты одновременно. Должен быть 360-360°.

При отклонениях от этих значений, можно говорить о смещении фаз газораспределения.

Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.

 

 

 

 

 

 

 

 

diagnozbibike.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта