Ключ к знанию

Температура горения газа и бензина


Мифы о ГБО — Сообщество «Ремонт и Эксплуатация ГБО» на DRIVE2

Сегодня исполнилось три года с тех пор, как я газифицировал свою первую машинку. Вспомнив себя тогда, свои мысли и убеждения, поржав над собой тогдашним с высоты своего опыта сегодняшнего

В ходе прочтения я ужаснулся тем заблуждениям и/или неточностям, которые были высказаны в комментариях. Так как я давно уже занимаюсь развенчанием подобных заблуждений на профильных форумах, у меня накопилось прилично материала по этой тематике. Попробую выложить их тут – авось, кому-то да пригодится. Ни одно из моих утверждений не является голословным.

Бывает так, что заблуждения «кучкуются» вокруг какой-то одной темы. С такой темы мы и начнем, и тема эта – расход газа. ГБО ведь ставится не для красоты, а во имя уменьшения расходов на ежедневные поездки.

Миф1: «Расход газа считается так же, как расход бензина»
Миф2: «Расход газа на ГБО последних поколений такой же, как расход бензина»
Миф3: «Расход газа на исправном ГБО не должен быть больше, чем на 10% от расхода бензина».

Наслушется народ таких вот мифов, и начинается подсчет: вот на бензе у меня был расход 10, на газе – 12, то естьвырос на 20% — почему так много? Вот у чувака на такой же машине с таким же ГБО расход газа вообще снизился – до 9л на сотню. Да и установщики чесали что будет не более чем на 10% больше… Что-то тут не так!

На самом деле, все просто. Принцип работы двигателя при переходе на газ ни капельки не изменился. Это все так же тепловой двигатель, который работает по циклу Отто, превращая тепловую энергию от сгорания топлива в механическую работу по перемещеню автомобиля из точки А в точку Б.

Опа-опа, а что у нас с «тепловой энергией»? Сколько нужно сжечь газа, чтоб получить столько же энергии, сколько дает сжигание одного литра бензина?
Ответ: 1,2 — 1,3 литра в зависимости от количественного состава пропан-бутановой смеси. В среднем – 1,25 литра. То есть – на 25% больше, а ни разу не 10%! Сцуко физика-химия, их ведь не обманешь!

Пропан:
Плотность жидкой фазы = 0.51 кг/л
Удельная теплота сгорания = 48 МДж/кг
Теплота сгорания одного литра = 0.51 * 48 = 24.48 Мдж

Бутан:
Плотность жидкой фазы = 0.58 кг/л
Удельная теплота сгорания = 45.8 МДж/кг
Теплота сгорания одного литра = 0.58 * 45.8 = 26.564 Мдж

Бензин:
Плотность = 0.7кг/л
Удельная теплота сгорания = 46 МДж/кг
Теплота сгорания одного литра = 0.7 * 46 = 32.2 Мдж

Кол-во литров бутана дла замещения литра бензина = 32.2 Мдж / 26.564 Мдж = 1.21
Кол-во литров пропана дла замещения литра бензина = 32.2 Мдж / 24.48 Мдж = 1.31

Так что же – установщики, да и чувак с упавшим расходом врут? Не поверите – они говорят чистую правду. С их точки зрения прибавка расхода действительно составит 10%.
«Фак мой мозг», скажете вы. Да как это так получается?
А вот так. Расход газа большинство народа считает неправильно, оттого и результаты у всех разные.
Вот был один вид топлива – бензин – все было просто. Заправил до полного, отъездил «до лампочки», снова заправил до полного. Поделил литры на километры, домножил на 100 – на тебе расход.
Но автомобиль с ГБО при эксплуатации расходует два вида топлива: собственно газ (что логично) и бензин.

Расход бензина может отсутствовать только у владельцев ГБО первого-второго поколения (эжекторное ГБО. Можно завестись на газе. Не рекомендуется, т.к. это гробит редуктор) и пятого-шестого (впрыск жидкой фазы, редуктора вообще нет). Наиболее популярное инжекторное ГБО4 поколения (впрыск паровой фазы во впускной коллектор) требует прогрева двигателя до температуры 35-55 градусов. Естественно, прогрев происходит при работе двигателя на бензине.

Вот как схематически может выглядеть рядовая поездка с точки зрения расхода двух топлив:

Если применить ту же логику, что и раньше, то в формулу закрадывается ошибка – не учитывается расход собственно бензина на участке АВ, который подменяет собою газ при непрогретом двигателе. Даже если собственно движения на газе не происходит (чувак греет автомобиль на месте), и расстояние АВ равно нулю – все равно бензин на прогрев так или иначе расходуется. А зимой его, кстати, уходит не так и мало.
Степень влияния «неучтенного» бензина сильно зависит от среднего пробега автомобиля на один прогрев. Если кто проезжает за раз 5 км, то он действительно получит расход газа меньше, чем до этого был расход бензина – за счет увеличения расход бензина, естественно. А чувак с пробегом в 100-150 км – получит расход газа куда больше. Зато расход бензина у него будет меньше.
Кстати, именно поэтому расход по трассе у «газированных» автомобилей практически всегда соответствует +25% к их бензиновому расходу.
Вот чтобы не заморачиваться более со всей этой сложной темой насчет расхода – прогревы, средние пробеги, город-трасса и т.д., проще всего экономические расчеты по газу и бензину вести через энергоемкость. Ведь любое топливо – это лишь энергоноситель.
Резюме: расход сжиженого газа всегда составляет около 125% от расхода бензина даже при идеальной установке ГБО.

Следующая группа мифов посвящена температцуре горения газа по сравнению с температурой горением бензина:
Миф4: «Газ горит при более высокой температуре, чем бензин»
Миф5: «Раз газ горит горячее, то и свечи должны быть с большим калильным числом»
Миф6: «Раз газ горит горячее, то поршни/клапана/седла сильнее нагреваются, что приводит к их усиленному износу»
Миф7: «Раз газ горит горячее, то при особо нагруженных режимах нужно переводить двигатель на бензин»
Миф8: «Раз газ горит горячее, то его нельзя применять на турбированных двигателях»

Ну что же, будем разбираться – а что вообще такое – «температура горения», от чего она зависит, и действительно ли газ горит горячее?
Горение – экзотермическая химическая реакция, в ходе которой кислород воздуха окисляет углеводороды до воды и углекислого газа. Азот в ходе горения не участвует (вернее, почти не участвует – им смело можно пренебречь).
Температуру пламени можно вычислить, исходя из теплопроизводительности сгорания того или иного вида топлива, и теплоемкости продуктов сгорания.
Например, теплота вспышки стехиометрической бензовоздушной смеси в цилиндре двигателя объемом 1,6л составит 1480 джоулей, а теплота вспышки стехиометрической смеси пропан-бутана даст 1420 джоулей.
Расчеты-пруф под катом:

Удельный вес воздуха = 0.0012041 кг/л при 20 градусах
Удельный вес пропана = 0.002019 кг/л
Удельный вес бутана = 0.002703 кг/л
Удельный вес паров бензина — увы, табличных данных не нашел. Если принять среднюю длину углеродной цепочки 8 атомов углерода, то удельный вес паров можно принять за 0.0045 кг/л

Стехиометрическое соотношение воздух/пропан = 15.6
Стехиометрическое соотношение воздух/бутан = 15.3
Стехиометрическое соотношение воздух/бензин = 14.7

рассчитываем вес горючего вещества

V = m1/r1 + m2/r2 ; V — объем смеси газов, m1 масса воздуха, m2 масса горючего, r1 плотность воздуха, r2 плотность горючего
m1 = S*m2 ; S — стехиометрическе соотношение

V = S*m2/r1 + m2/r2
V = m2 * (S/r1 + 1/r2)
m2 = V / (S/r1 + 1/r2)

Или в цифрах:
вес порции пропана = 0.4 / (15.6 / 0.0012041 + 1/0.002019 ) = 0.0000297375 кг
вес порции бутана = 0.4 / (15.3 / 0.0012041 + 1/0.002703 ) = 0.00003058911 кг
вес порции бензина = 0.4 / (14.7 / 0.0012041 + 1/0.0045 ) = 0.00003217888 кг

И, наконец, искомое — теплота вспышки одной порции топливовоздушной смеси:
пропан = 0.0000297375 кг * 48 МДж/кг = 1427.4 Дж
бутан = 0.00003058911 кг * 45.8 МДж/кг = 1401 Дж
бензин = 0.00003217888 * 46 МДж/кг = 1480.2 Дж

Качественный состав продуктов сгорания газа и бензина одинаков, а количественный – почти одинаков: в продуктах сгорания газа содержится чуть больше паров воды. А как известно из справочника, теплоемкость паров воды больше, чем у углекислого газа.
Отсюда вывод: температура горения газа ну никак не может быть больше, чем температура горения бензина. На самом деле – она слегка меньше.
Теоретические расчеты подтверждаются практическими опытами с ЕГТ-датчиком.
А как же остальные мифы этого семейства? Как же свечи «под газ», их же выпускают именитые фирмы типа Denso и NGK. У них же толпа инженеров – они ж не могут быть тупее какого-то киевского программиста?

Ответ таков: инженеры тут ни при чем. Со свечами тут прикол такой же, как с гомеопатическими «лекарствами». Народ верит в их лечащее действие – значит, можно продавать. Хуже ж точно не будет, если в газовый двигатель поставить холодную свечу. Газ тем характерен, что при его сгорании не образуются твердые отложения, и даже холодная свеча отлично работает. Профит! Странно, что вместе со свечами «под газ» не продают также и ремни привода агрегатов «под газ» и коврики в салон «под газ». То бишь балом правят как раз не инженеры, а маркетологи.
Остальные мифы, связанные с температурой горения газа, являются чуть более сложными. Да, если сравнивать температуры горения газа и бензина в одинаковых условиях, то газ горит с чуть меньшей температурой, чем бензин. Но кто сказал, что условия всегда будут одинаковые? Из-за неправильно подобранного оборудования (в первую очередь – редуктора и форсунок), жопорукой установки и кривой настройки условия горения газа могут сильно отличаться от условий горения бензина. Там, где подавалась слегка обогащенная бензиновая смесь (для наиболее быстрого сгорания, что нужно для максимума мощности) такая кривая система может выдать сильно обедненную смесь. Время ее горения будет значительно ниже, чем у богатой бензиновой. А поджигаться она будет исходя из предположения, что с составом все ОК. В результате имеем позднее зажигание и снижение КПД. Как следствие – повышенный нагрев камеры сгорания, турбины (у кого есть) и т.д.
Масла в огонь подливает то, что именно турбированные моторы наиболее критичны к производительности форсунок и редуктора.
Резюме: при прочих равных условиях газ горит при температуре чуть ниже, чем та, при которой горит бензин. При обеспечении правильных условий горения топлива во всех режимах работы двигателя газ не может навредить. При нарушении же условий подачи топлива запороть двигатель можно и на газе, и на бензине: попробуйте-ка понаваливать на «турбе» на бедной смеси — увидите, что станет с двигателем вообще и с турбиной в частности.

Газуем дальше. Группа мифов, посвященных скорости горения газа по сравнению со скоростью горения бензина.
Миф8: «Газ горит медленнее, чем бензин…»
Миф9: «… и сгорает не в цилиндре, потому что не успевает, а в коллекторе, турбине или даже в катализаторе»
Миф10: «… и потому двигатель на газе нельзя крутить выше 4000 оборотов в минуту»
Миф11: «. и потому, чтоб не угробить двигатель, обязательно нужно править угол опережения зажигания – ставить вариатор или модифицировать прошивку»

Начнем с самого первого мифа. На самом деле, в одинаковых условиях газ горит примерно на 5% быстрее, чем бензин. Да-да, именно так. Но речь идет именно об одинаковых условиях! А самое главное условие, влияющее на скорость горения топлива — это коэффициент избытка воздуха (λ). Иными словами, если сравнивать горение бензина при λ = 0.86 (богатая смесь, наиболее бысстрое горение) и горение газа при α = 1,25 (бедная смесь, наиболее медленное горение), то миф превращается в чистую пра

www.drive2.ru

Про ГБО — DRIVE2

Нашел на одном форуме очень интересную информацию. Возможно кому пригодится.

Хочу прояснить некоторые моменты в плане физики и практики эксплуатации авто на газе:

1) вопреки расхожим заблуждениям газ ничего в двигателе "сушить " не может. Наоборот, ввиду газообразного фазового состояния газ НЕ РАСТВОРЯЕТ И НЕ СМЫВАЕТ масляную плёнку со стенок цилиндров. Как следствие, улучшается смазываемость ЦПГ.

2) о том, что газ якобы "сушит клапана": сушить он опять же ничего в принципе не может по прчине нулевой гигроскопичности ввиду своей газообразной фазы. Но при работе ДВС на газе на такте впуска топливо-воздушной смеси температура тарелки клапана будет НА НЕСКОЛЬКО ГРАДУСОВ выше, нежели при работе на бензине. За счет того, что облако микрокапель бензина из форсунки дополнительно охлаждает открытый клапан на такте впуска. А как известно, теплодинамика клапанов распределяется примерно 30:70 — седло клапана : направляющая втулка. В технической литературе охлаждением тарелки клапана облаком микрокаплей бензина пренебрегают изза малости и незначительности величины. В уравнениях термодинамики для ДВС этот параметр ВООБЩЕ отсутствует.
Заблуждение об "осушении" газом клапанов берет своё начало в давние советские времена. Когда делались первые попытки внедрения ГБО в таксопарках и автоколоннах. По сравнению с ЭТИЛИРОВАННЫМ бензином (а НЕэтилированного в те времена просто не было), газо-воздушная смесь дйствительно немного ухудшала условия смазки седел клапанов. Так как этилирующие присадки содержали СВИНЕЦ, который в некоторой мере и выполнял функцию смазки седел клапанов.
Нынче же выпуск этилированного бензина прекращен. И газ НИКАК не может ухудшить условия смазки седла клапана по сравнению с бензином, выпущенным по современным нормам.

3) в сравнении с бензином "октановое" (не совсем корректое для газа название) число газа составляет примерно 102-105-110 единиц. Этим обусловлены некоторые особенности и последствия работы ДВС на газо-воздушной смеси:
— чем выше степень сжатия (а соосветственно и компрессия), тем быстрее распространяется в камере сгорания фронт пламени, тем выше температура окисленной смеси, тем выше конечное (рабочее) давление над поршнем.
— соответственно для достижения идеальных условий для работы ДВС на газе его степень сжатия должна быть выше, чем при работе на бензине.
При проектировании ДВС исходят из определённой скорости сгорания бензовоздушной топливной смеси. Соответственно подбираются и настраиваются фазы газораспределния. Они подбираются с определённым запасом. Т.е. В ПЕРИОД СГОРАНИЯ топливной смеси оба глапана закрыты. И только ПОСЛЕ ПОЛНОГО СГОРАНИЯ топливной смеси и образования над поршнем перегретого газа в соответствии с адиабатными процессами этот перегретый газ начинает толкать поршень вниз, постепенно расширяясь и соответственно охлаждаясь. В итоге на выходе из камеры сгорания температура составляет примерно 800-980 градусов.
Так как октановое число газа выше, а фазовая структура иная (газ вместо капель-облачной структуры) то и скорость его сгорания значительно медленнее. Соответственно увеличивается время горения газо-воздушной смеси. Помимо того, что температура перегретого газа над поршнем меньше, меньше его давление и пр., при некоторых режимах работы ГАЗОВОЗДУШНАЯ СМЕСЬ ПРОДОЛЖАЕТ ДОГОРАТЬ ПОСЛЕ ОТКРЫТИЯ ВЫПУСКНОГО КЛАПАНА. Соответственно, температура на выходе из камеры сгорания кратковременно может повыситься до 1500-1800 градусов! Что очень быстро может привести к перегреву и термическим необратимым деформациям клапанов ( "прогару" ). В исключительных случаях это растянутое горение газовоздушной смеси приводит к тому, что теплодинамика поршня становится обусловлена не адиабатными процессами, а постоянным нагревом от не успевающей сгорать газо-воздушной смеси. И начинается необратимая тепловая деформация поршня.

Как с эти бороться и так ли это страшно?
Фишка в том, что примерно то же самое произойдет, если в классику залить 98й бенз, или тем более 102й (оказывается в европе и такой есть, не помню как обозначается, у нас на нем некоторые особо фанатичные пацыки по ночам устраивают гонки).
Для борьбы с этой бякой (прогарами клапанов и цилиндров) что при работе что на бензине, что на газе можно использовать два метода: увеличение опережения зажигания и увеличение степени сжатия.
Увеличение угла опережения на современных ЭБУ проблемантично. Нужно перешивать контроллер под специальную "газовую" программу! Программ таких мало. Тем более мало специалистов, которые грамотно это сделают. В идеале этот путь предусматривает установку ДВХХ контроллеров, бензинового и газового. И систему их коммутирования. Это сложно и дорого. Поэтому на ГБО 4 поколения для управления газовой форсункой используется сигнал, приходящий на форсунку бензиновую. Косяк в том, что НИКАК нельзя изменить карту зажигания. Так как эта карта зашита в штатном УБУ, которы и продолжает на самом деле управлять подачей газа. Но фишка в том, практически большинство современных автомобилей имеют так называемую "адаптивную" систему управления. Т.е. блок САМ, естественно в определенных пределах, может корректировать карты зажигания. Если нет детонации (а на газе ввиду его повышенной антидетонационной стойкости она отсутствует), то очень скоро блок выводит карту зажигания на максимально возможно ранне зажигания на любом режиме работы двигателя. Это во-первых.
А во-вторых, современные ДВС имеют высокую степень сжатия, которая исключает возникновение вышеописанных мной негативных последствий работы на газо-воздушной смеси.

В итоге, учитывая всё вышесказанное:
Не нужно бояться газа. Нужно просто знать некоторые особенности. И соответственно их учитывать.
Не нужно тулить газ на древние моторы с низкой степенью сжатия и ожидать после этого бешенного ресурса и суперэкономичности. Чем выше степень сжатия двигателя и лучше его общее техническое состояние (в частности компрессия), тем оправданнее установка газового оборудования. Тем меньше будет разница в расходе газа и бензина. Тем выше экономический эффект.
НИ В КОЕМ СЛУЧАЕ НЕЛЬЗЯ ДУШИТЬ РАСХОДОМ ГАЗА СОВРЕМЕННЫЕ ИНОМАРОЧНЫЕ ДВИГАТЕЛИ (особенно большеобъемные) ПРИ ИСПОЛЬЗОВАНИИ ГБО 4 ПОКОЛЕНИЯ!
Сгорание обеднённой газо-воздушной смеси будет проходить жестко, что будет воспринято датчиками, как ДЕТОНАЦИЯ! А при том, что лямбда-зонд будет продолжать показывать "обеднённую смесь" (по причине того, что газ при сгорании не дает столько гав…на, сколько бензин), то контроллер начнёт резко заваливать угол опережения зажигания. Соответственно позднее зажигание — и ГВС начинает стабильно догорать в коллекторе. Очень быстро настает пи…сец клапанам и ГОТОВЬТЕ ДЕНЕЖКИ НА НОВУЮ ГОЛОВУ!

Если вам дорого ваш автомобиль, вы на самом деле экономны и дальновидны и если это не слишком затруднительно для вас в плане возьни и не представляет конструктивных трудностей в плане авто, НЕ ПОМЕШАЕТ СНЯТЬ ГОЛОВУ И НЕМНОГО ЕЁ ШЛИФАНУТЬ. Заодно проверить притертость клапанов и износ втулок.
Эффект значительный!
Так на 99 ВАЗке шлифовка головы на 0,5 мм с последующим точным выставление фаз газораспределения с помощью регулируемой шестерни снизила расход газа примерно на 15%. Динамика возросла значительно. Правда бензин после этого использовался только 95 и 98.

По поводу проблем с зажиганием: как правильно было подмечено одним из форумчан, температура вспышки газовоздушной смеси несколько выше, чем у бензо-воздушной. Соответственно капризы запущеной системы зажигания будут гораздо заметнее при работе двигла на газе.
ПОэтому не будет лишним просто почаще её проверять и содержать в исправном обслуженном состоянии.
+ из собственного опыта, относящегося не только к эксплуатации машин с ГБО:
— при установке свечей проверять их омметром на сопротивление. Чемменьше внутреннее сопротивление, тем лучше. Чем меньше разброс сопротивлений, тем ровнее работа двигателя! — На 8клапанных вазах огромный эффект даёт применение многоконтактных свечей! Искра-то будет всегда ТОЛЬКО ОДНА. Но вот искровой промежуток будет ВСЕГДА открыт и направлен в камеру сгорания. Следовательно во всех 4х цилиндрах фронт пламени будет распространяться в более одинаковых условиях. Более ровная работа двигателя.
— искровой зазор свечи нужно немного уменьшить. Примерно на 15-20%.
— поставить высоковольные провода, сделанные на заказ. В некоторых торговых точках вам сделают провода любой длины. А провода можно попросить подобрать с наименьшим внутренним удельным сопротивлением и при конструктивной возможности желательно сделать их все одинаковой длины.

Поверьте, эффект вас поразит даже при езде на бензине.

Если у Вас не гидрокомпенсаторы, то обратитесь на сервис, чтобы зазоры клапанов вам выставили несколько большие.
И проверяйте регулировку немного чаще, чем вы делали это раньше.
Эта мера сведет вероятность влияния газа на прогар клапанов практически к нулю.

Для пущей уверенности при установке и настройке ГБО 4 поколения можно попросить мастеров настроить блок управления подачей газа на автоматическое переключение на бензин при работе двигателя на высоких оборотах, превышающих определённый порог.
Почему и зачем…
Уже писал, что период сгорания порции газо-воздушной смеси несколько больше, нежели у бензина в силу ряда причин. Поэтому при работе на высоких оборотах кратковременно может возникнуть режим, когда догорание смеси будет происходить уже ПОСЛЕ открытия выпускного клапана. Например, при возникновении резкой нагрузки в период, когда двигатель будет работать на больших оборотах, ЭБУ значительно уменьшает угол опережениязажигания. Пождиг смеси происходит позднее.
Относительно всего времени работы двигателя эти экстремальные режимы очень кратковременны. И практически не влияют на снижение ресурса системы газораспределения.
Но можно исключить и их.

Например, Ваша машина оборудована автоматической коробкой передач. Переключение передач при спокойной манере езды происходит примерно на 3200 оборотах. ПОпросите мастера отрегулировать Вам автоматический переход на бензин при оборотах свыше 3800-4000. И соот

www.drive2.ru

Что происходит с двигателем с установленным ГБО

За последние 10 лет технологии в газовом оборудовании сделали колоссальный прорыв, и все детские болезни ушли в прошлое. Газовое оборудование абсолютно нормально работает на всех двигателях и при нормальной эксплуатации ресурс двигателя зачастую выше. При нынешнем развитии технологий ГБО, можно смело заявлять о возможности установки газового оборудования на любой двигатель внутреннего сгорания (вопрос только в том, является это обоснованным с экономической точки зрения)...    Многократные исследования, которые начинаются с 60-х годов прошлого века подтверждают факт, что скорость горения газа (пропан-бутана) практически сопоставима с бензиновой, однако присутствует одна важная физическая характеристика газа: газ, до 5-го поколения ГБО, попадает в камеру сгорания в испаренном виде (в 5-м поколении ГБО он испаряется во впускном коллекторе). "Ну и что...", многие скажут, но будут не правы. Жидкий бензин, попадая на впускные клапана, на стенки цилиндра и поршень, испаряется и так же поглощает температуру. При повышенных нагрузках на двигатель это свойство часто используется автомобильными конструкторами, чтобы снять термо нагрузку с двигателя (при этом растет расход бензина пропорционально скорости). По этому при повышенных нагрузках (не скоростях) газ не способен так же хорошо снимать температурную нагрузку в двигателе. В таком случае это может привести к более быстрому износу клапанов и седел в головке блока цилиндра.   КАК ЭТО ПРОИСХОДИТ НА ПРАКТИКЕ:  Вы часами едете на скоростях свыше 150 км в час, при этом кратковременные обгоны не в счет. Двигатель работает в режиме повышенной нагрузки в котором, на бензине, подается топливо в излишке(богатая смесь) чтобы "охладить" поршневую группу. Газ на это не способен и металл начинает нагреваться до более высоких температур. Это приводит к тому, что  металл становиться менее прочным и процесс износа ускоряется.    Машины, которые ездят регулярно на трассе быстро, без дополнительного наблюдения, которое производится при регламентном обслуживании ГБО, могут возыметь определенные сложности через 70-100 тыс. км пробега в виде тяжелого запуска двигателя/вибраций на холостом ходе и впоследствии прогара клапанов. А вот автомобили, чья среда обитания в городе таких проблем практически не имеют.     ПРИ РЕШЕНИИ УСТАНОВИТЬ ГБО ГЛАВНОЕ ЗАПОМНИТЬ ВАЖНЫЙ МОМЕНТ: Газовое оборудование вы ставите, чтобы экономить! Для спортивной езды(как стиля вождения) газ не подходит. Чтобы избежать прогара клапанов при езде на газе, вам просто необходимо избегать повышенных скоростей.      Повышенные скорости для бюджетных и среднего класса автомобилей - это 135+ км\час Повышенные скорости для автомобилей премиум класса 150-170 км\час   Для автомобилей немецкого автопрома 190-220 км\час     Почему у немецких автомобилей не прогорают клапана\нет сложностей с усадкой клапанов на газе?   Все очень просто. В Германии очень важной частью инфраструктуры являются автобаны на которых вы можете ехать с любой скоростью часами, пока у вас не закончится топливо... Даже, к примеру, когда вы заезжаете на заправку на автобане, для удобства, все топливные колонки настроены на заправку "до полного" и клиент сам контролирует то количество топлива, которое ему необходимо.    При этом "честность" клиента контролируется десятками видеокамер на каждой колонке...   Так вот немецкие автопроизводители заведомо зная о потенциальных возможностях скоростных режимах в своей стране, закладывают значительный запас прочности в двигатели.     Какие возможные технические решения для снижения рисков прогара клапанов при езде на газе?     Решение №1 Исключение механических и электронных погрешностей ГБО   В газовом оборудовании BRC, благодаря тому, что все компоненты были разработаны одним производителем, стало возможным использование очень сложных и тонких алгоритмов, которые позволяют избежать проблем с клапанами, а именно:   1. Высокоточная электроника точно и быстро производит расчет необходимой порции газа для каждого отдельного цилиндра   2. Газовый редуктор точно и стабильно обеспечивает подачу подогретого должным образом газа при постоянном давлении.   3. Газовые форсунки не подвержены загрязнению и тем самым сохраняют свои первоначальные параметры многие годы (но помните, что нужно периодично...раз в 10 тысяч км производить плановую замену фильтров). Так как в газовом блоке управления содержится информация о параметрах производительности форсунки, возможно применение очень интересного алгоритма сохранения клапанов (головки блока цилиндра)...     Решение №2 Внедрение специальных алгоритмов в газовой электронике   Это очень интересный момент, который раньше практиковался в ручном режиме с меньшей точностью из-за того, что использовались постоянно разные комплектующие, с разбросом характеристик... итак...   В электронике газового оборудования BRC было применено два очень точных и продуманных алгоритма.     Алгоритм №1 VSR - Valve Seat Recession ( дословно "усадка седел клапанов")        Суть данного алгоритма в том, что установщик выставляет(если знает что и как делать) порог оборотов и нагрузки двигателя, после которых газовый блок управления ГБО начинает замещать часть газа и подавать вместо него порцию бензина. Внимание: двигатель не переходит на бензин выше определенных оборотов...вместо этого происходит подача микро доз бензина и только при достижении определенной нагрузки. Этот алгоритм возможно реализовать только, если вы знаете точную дозировку газовой форсунки, характеристики редуктора. С ГБО BRC это возможно.    Так же благодаря этому режиму возможна установка ГБО на скоростные/спортивные автомобиля без ущерба ресурсу.      Алгоритм №2 Leaning in open loop strategy (дословно "обеднение смеси при разорванной петле" лямбда регулирования)          Помните, как я писал выше о методах снятия температурных нагрузок на бензине? Подавая в избыточном количестве бензин, он будет отбирать тепло с мест, где слишком жарко(во время испарения). На газе этого сделать эффективно не удастся (на 6-м поколении ГБО это возможно), так как в камеру сгорания он попадает уже испаренным. При этом в прямом смысле газ при повышенных нагрузках вылетает в выхлопную трубу и нагружает катализатор (который должен дожечь избыточное топливо).        Суть данного алгоритма в том, что установщик может убрать излишки газа в режимах повышенных нагрузок, а газовая электроника это сможет четко реализовать.        Для наглядности поясню, что на некоторых автомобилях речь идет о 20...а иногда и о 30% уменьшения расхода на газе на режимах разгона и повышенной нагрузке!!! Именно поэтому на ГБО BRC, возможно очень точно настроить параметры расхода газа. А по большому счету цель заказчика, который решил установить ГБО - экономить на топливе и не иметь головной боли с газовым оборудованием.     ...и самое последнее...   Газовое оборудование возможно настроить только с использованием OBD сканера и только в движении.   Регулировка ГБО в статике не дает гарантии аккуратной настройки всех параметров и расхода           Так же возможен вариант применения динамометрического стенда с замерами мощности и крутящего момента...но при наличии хорошей трассы, вы получаете дополнительно такие вводные параметры, как свежий воздух, лобовое сопротивление при повышенных скоростях и реальное сопротивление качению. При этом двигатель работает в штатных нагрузках.

rosavtogas.ru

Сообщества › Это интересно знать... › Блог › Газобаллонное оборудование и мифология

Сегодня исполнилось три года с тех пор, как я газифицировал свою первую машинку. Вспомнив себя тогда, свои мысли и убеждения, поржав над собой тогдашним с высоты своего опыта сегдняшнего, я решил поискать темы о газификации автомобилей на ЯПе. Их мало, но они есть.
В ходе прочтения я ужаснулся тем заблуждениям и/или неточностям, которые были высказаны в коментариях. Так как я давно уже занимаюсь развенчанием подобных заблуждений на профильных форумах, у меня накопилось прилично материала по этой тематике. Попробую выложить их тут – авось, кому-то да пригодится. Ни одно из моих утверждений не является голословным.
Бывает так, что заблуждения «кучкуются» вокруг какой-то одной темы. С такой темы мы и начнем, и тема эта – расход газа. ГБО ведь ставится не для красоты, а во имя уменьшения расходов на ежедневные поездки.
Миф1: «Расход газа считается так же, как расход бензина»
Миф2: «Расход газа на ГБО последних поколений такой же, как расход бензина»
Миф3: «Расход газа на исправном ГБО не должен быть больше, чем на 10% от расхода бензина».
Наслушется народ таких вот мифов, и начинается подсчет: вот на бензе у меня был расход 10, на газе – 12, то естьвырос на 20% — почему так много? Вот у чувака на такой же машине с таким же ГБО расход газа вообще снизился – до 9л на сотню. Да и установщики чесали что будет не более чем на 10% больше… Что-то тут не так!
На самом деле, все просто. Принцип работы двигателя при переходе на газ ни капельки не изменился. Это все так же тепловой двигатель, который работает по циклу Отто, превращая тепловую энергию от сгорания топлива в механическую работу по перемещеню автомобиля из точки А в точку Б.


Опа-опа, а что у нас с «тепловой энергией»? Сколько нужно сжечь газа, чтоб получить столько же энергии, сколько дает сжигание одного литра бензина?
Ответ: 1,2 — 1,3 литра в зависимости от количественного состава пропан-бутановой смеси. В среднем – 1,25 литра. То есть – на 25% больше, а ни разу не 10%! Сцуко физика-химия, их ведь не обманешь!

Пропан:
Плотность жидкой фазы = 0.51 кг/л
Удельная теплота сгорания = 48 МДж/кг
Теплота сгорания одного литра = 0.51 * 48 = 24.48 Мдж

Бутан:
Плотность жидкой фазы = 0.58 кг/л
Удельная теплота сгорания = 45.8 МДж/кг
Теплота сгорания одного литра = 0.58 * 45.8 = 26.564 Мдж

Бензин:
Плотность = 0.7кг/л
Удельная теплота сгорания = 46 МДж/кг
Теплота сгорания одного литра = 0.7 * 46 = 32.2 Мдж

Кол-во литров бутана дла замещения литра бензина = 32.2 Мдж / 26.564 Мдж = 1.21
Кол-во литров пропана дла замещения литра бензина = 32.2 Мдж / 24.48 Мдж = 1.31

Так что же – установщики, да и чувак с упавшим расходом врут? Не поверите – они говорят чистую правду. С их точки зрения прибавка расхода действительно составит 10%.
«Фак мой мозг», скажете вы. Да как это так получается?
А вот так. Расход газа большинство народа считает неправильно, оттого и результаты у всех разные.
Вот был один вид топлива – бензин – все было просто. Заправил до полного, отъездил «до лампочки», снова заправил до полного. Поделил литры на километры, домножил на 100 – на тебе расход.
Но автомобиль с ГБО при эксплуатации расходует два вида топлива: собственно газ (что логично) и бензин.

Расход бензина может отсутствовать только у владельцев ГБО первого-второго поколения (эжекторное ГБО. Можно завестись на газе. Не рекомендуется, т.к. это гробит редуктор) и пятого-шестого (впрыск жидкой фазы, редуктора вообще нет). Наиболее популярное инжекторное ГБО4 поколения (впрыск паровой фазы во впускной коллектор) требует прогрева двигателя до температуры 35-55 градусов. Естественно, прогрев происходит при работе двигателя на бензине.

Вот как схематически может выглядеть рядовая поездка с точки зрения расхода двух топлив:

Если применить ту же логику, что и раньше, то в формулу закрадывается ошибка – не учитывается расход собственно бензина на участке АВ, который подменяет собою газ при непрогретом двигателе. Даже если собственно движения на газе не происходит (чувак греет автомобиль на месте), и расстояние АВ равно нулю – все равно бензин на прогрев так или иначе расходуется. А зимой его, кстати, уходит не так и мало.
Степень влияния «неучтенного» бензина сильно зависит от среднего пробега автомобиля на один прогрев. Если кто проезжает за раз 5 км, то он действительно получит расход газа меньше, чем до этого был расход бензина – за счет увеличения расход бензина, естественно. А чувак с пробегом в 100-150 км – получит расход газа куда больше. Зато расход бензина у него будет меньше.
Кстати, именно поэтому расход по трассе у «газированных» автомобилей практически всегда соответствует +25% к их бензиновому расходу.
Вот чтобы не заморачиваться более со всей этой сложной темой насчет расхода – прогревы, средние пробеги, город-трасса и т.д., проще всего экономические расчеты по газу и бензину вести через энергоемкость. Ведь любое топливо – это лишь энергоноситель.
Резюме: расход сжиженого газа всегда составляет около 125% от расхода бензина даже при идеальной установке ГБО.

Следующая группа мифов посвящена температцуре горения газа по сравнению с температурой горением бензина:
Миф4: «Газ горит при более высокой температуре, чем бензин»
Миф5: «Раз газ горит горячее, то и свечи должны быть с большим калильным числом»
Миф6: «Раз газ горит горячее, то поршни/клапана/седла сильнее нагреваются, что приводит к их усиленному износу»
Миф7: «Раз газ горит горячее, то при особо нагруженных режимах нужно переводить двигатель на бензин» [b]
[b]Миф8: «Раз газ горит горячее, то его нельзя применять на турбированных двигателях»

Ну что же, будем разбираться – а что вообще такое – «температура горения», от чего она зависит, и действительно ли газ горит горячее?
Горение – экзотермическая химическая реакция, в ходе которой кислород воздуха окисляет углеводороды до воды и углекислого газа. Азот в ходе горения не участвует (вернее, почти не участвует – им смело можно пренебречь).
Температуру пламени можно вычислить, исходя из теплопроизводительности сгорания того или иного вида топлива, и теплоемкости продуктов сгорания.
Например, теплота вспышки стехиометрической бензовоздушной смеси в цилиндре двигателя объемом 1,6л составит 1480 джоулей, а теплота вспышки стехиометрической смеси пропан-бутана даст 1420 джоулей.
Расчеты-пруф под катом:

Удельный вес воздуха = 0.0012041 кг/л при 20 градусах
Удельный вес пропана = 0.002019 кг/л
Удельный вес бутана = 0.002703 кг/л
Удельный вес паров бензина — увы, табличных данных не нашел. Если принять среднюю длину углеродной цепочки 8 атомов углерода, то удельный вес паров можно принять за 0.0045 кг/л

Стехиометрическое соотношение воздух/пропан = 15.6
Стехиометрическое соотношение воздух/бутан = 15.3
Стехиометрическое соотношение воздух/бензин = 14.7

рассчитываем вес горючего вещества

V = m1/r1 + m2/r2 ; V — объем смеси газов, m1 масса воздуха, m2 масса горючего, r1 плотность воздуха, r2 плотность горючего
m1 = S*m2 ; S — стехиометрическе соотношение

V = S*m2/r1 + m2/r2
V = m2 * (S/r1 + 1/r2)
m2 = V / (S/r1 + 1/r2)

Или в цифрах:
вес порции пропана = 0.4 / (15.6 / 0.0012041 + 1/0.002019 ) = 0.0000297375 кг
вес порции бутана = 0.4 / (15.3 / 0.0012041 + 1/0.002703 ) = 0.00003058911 кг
вес порции бензина = 0.4 / (14.7 / 0.0012041 + 1/0.0045 ) = 0.00003217888 кг

И, наконец, искомое — теплота вспышки одной порции топливовоздушной смеси:
пропан = 0.0000297375 кг * 48 МДж/кг = 1427.4 Дж
бутан = 0.00003058911 кг * 45.8 МДж/кг = 1401 Дж
бензин = 0.00003217888 * 46 МДж/кг = 1480.2 Дж

Качественный состав продуктов сгорания газа и бензина одинаков, а количественный – почти одинаков: в продуктах сгорания газа содержится чуть больше паров воды. А как известно из справочника, теплоемкость паров воды больше, чем у углекислого газа.
Отсюда вывод: температура горения газа ну никак не может быть больше, чем температура горения бензина. На самом деле – она слегка меньше.
Теоретические расчеты подтверждаются практическими опытами с ЕГТ-датчиком.
А как же остальные мифы этого семейства? Как же свечи «под газ», их же выпускают именитые фирмы типа Denso и NGK. У них же толпа инженеров – они ж не могут быть тупее какого-то киевского программиста?


Ответ таков: инженеры тут ни при чем. Со свечами тут прикол такой же, как с гомеопатическими «лекарствами». Народ верит в их лечащее действие – значит, можно продавать. Хуже ж точно не будет, если в газовый двигатель поставить холодную свечу. Газ тем характерен, что при его сгорании не образуются твердые отложения, и даже холодная свеча отлично работает. Профит! Странно, что вместе со свечами «под газ» не продают также и ремни привода агрегатов «под газ» и коврики в салон «под газ». То бишь балом правят как раз не инженеры, а маркетологи.
Остальные мифы, связанные с температурой горения газа, являются чуть более сложными. Да, если сравнивать температуры горения газа и бензина в одинаковых условиях, то газ горит с чуть меньшей температурой, чем бензин. Но кто сказал, что условия всегда будут одинаковые? Из-за неправильно подобранного оборудования (в первую очередь – редуктора и форсунок), жопорукой установки и кривой настройки условия горения газа могут сильно отличаться от условий горения бензина. Там, где подавалась слегка обогащенная бензиновая смесь (для наиболее быстрого сгорания, что нужно для максимума мощности) такая кривая система может выдать сильно обедненную смесь. Время ее горения будет значительно ниже, чем у богатой бензиновой. А поджигаться она будет исходя из предположения, что с составом все ОК. В результате имеем позднее зажигание и снижение КПД. Как следствие – повышенный нагрев камеры сгорания, турбины (у кого есть) и т.д.
Масла в огонь подливает то, что именно турбированные моторы наиболее критичны к производительности форсунок и редуктора.
Резюме: при прочих равных условиях газ горит при температуре чуть ниже, чем та, при которой горит бензин. При обеспечении правильных условий горения топлива во всех режимах работы двигателя газ не может навредить. При нарушении же условий подачи топлива запороть двигатель можно и на газе, и на бензине: попробуйте-ка понаваливать на «турбе» на бедной смеси — увидите, что станет с двигателем вообще и с турбиной в частности.

Газуем дальше. Группа мифов, посвященных скорости горения газа по сравнению со скоростью горения бензина.
Миф8: «Газ горит медленнее, чем бензин…»
Миф9: «… и сгорает не в цилиндре, потому что не успевает, а в коллекторе, турбине или даже в катализаторе»
Миф10: «… и потому двигатель на газе нельзя крутить выше 4000 оборотов в минуту»
Миф11: «. и потому, чтоб не угробить двигатель, обязательно нужно править угол опережения зажигания – ставить вариатор или модифицировать прошивку»
Начнем с самого первого мифа. На самом деле, в одинаковых условиях газ горит примерно на 5% быстрее, чем бензин. Да-да, именно так. Но речь идет именно об одинаковых условиях! А самое главное условие, влияющее на скорость горения топлива — это коэффициент избытка возду

www.drive2.ru

Вредно ли ГБО для двигателя — ответ опытного моториста о плюсах и минусах

Постоянное подорожание бензина приводит к росту популярности газового баллонного оборудования (ГБО), которое устанавливается параллельно бензиновой топливной системе. Особенно выгодно это тем автомобилям, которые расходуют много топлива и передвигаются на большие расстояния.

В среде автолюбителей существует множество мифов, которые предостерегают владельцев авто от перехода на газ. Важно разобраться, являются ли обоснованными такие предостережения.

Особенности мотора на газе и преимущества

Чаще всего ГБО устанавливается на автомобили с бензиновым двигателем. В качестве топлива для таких систем используется смесь газов пропана, метана и бутана. При этом метан является природным газом, а бутан – это продукт перегонки нефти.

Данная технология дает ощутимую экономию по сравнению с основными видами современного автомобильного топлива. Кроме того, газ при сгорании дает выхлоп намного чище бензинового. На внутренних деталях двигателя практически не образуется нагар и отложения, поскольку газ не содержит смолы, парафин, свинец, серу. Данная особенность способствует увеличению обязательных интервалов замены моторного масла, которое более длительное время остается чистым.

Высокое октановое число, устойчивость газовой смеси к детонации снижает нагрузку на элементы моторной поршневой группы. Параллельная с бензиновой топливной системой установка ГБО повышает надежность авто, увеличивает запас его хода.

При отсоединении коммутатора завести двигатель не удастся, поэтому такие методы обеспечат надежную защиту автомобиля от угона. Газобаллонное оборудование не содержит дорогостоящих деталей, требующих периодического ремонта. Поэтому в системе по большому счету ничего не ломается. Кроме того, газовую смесь нельзя слить из баллона и продать.

Смотрите также:

Мифы о рисках и негативном влиянии ГБО на двигатель

На фоне постоянной борьбы за чистоту выхлопа, развития альтернативных вариантов топливных систем, моторных конструкций появляется все больше мнений, негативно характеризующих ГБО для легковых автомобилей. Некоторые из утверждений настойчиво пугают водителей, но являются на самом деле не более чем мифами.

Баллоны имеют свойство взрываться

Это одно из самых распространенных заблуждений. На самом деле баллон имеет гораздо более толстые стенки по сравнению с бензиновыми аналогами, поэтому может выдерживать экстремальные температурные перепады, значительные ударные нагрузки.

Кроме того, система предусматривает четыре аварийных клапана, которые контролируют внутреннее давление, повреждение и обрыв топливной магистрали.

В случае малейшей опасности подача газа мгновенно пресекается. Также из соображений безопасности закачка газа осуществляется только до 80%. Это позволяет газовой смеси расширяться без достижения критичных показателей давления.

На безопасность напрямую влияет качество установки ГБО. При правильном монтаже, регулярном проведении ТО взрыв газового баллона в авто – практически нереальное событие.

Газ вредит мотору

Газовая смесь практически не содержит вредных химических добавок, поэтому не является агрессивной по отношению к любым деталям двигателя. В отличие от бензина, она не смывает со стенок цилиндра защитную антифрикционную масляную пленку.

Соответственно, поршневые кольца меньше изнашиваются из-за трения и поэтому служат дольше. Таким образом, мотор на газе работает намного мягче и меньше подвергается механическому износу. При этом его мощность снижается только на 5-10%.

Быстро прогорают клапана

Газовая смесь внутри камеры сгорания горит медленнее бензина на фоне значительного повышения внутренней температуры. Поэтому выпускные клапаны вместе с седлами, катализатор и лямбда-зонд могут прогореть.

С другой стороны, такая ситуация может возникать только при постоянной агрессивной езде на 4500 оборотах в минуту. Предотвратить такие проблемы может тщательная регулировка клапанов, выполненная в специализированных центрах.

Эксплуатационный ресурс свечей зажигания на газе втрое меньше

Из-за более высокой температуры сгорания газовой смеси свечи зажигания, высоковольтные провода работают не так долго, как в случае бензиновых моторов. Опытные специалисты по ГБО утверждают, что их ресурс уменьшается не больше, чем на 25%.

Не стоит решать данную проблему с помощью специальных газовых свечей, которые стоят гораздо дороже.

Проблемы с зимним запуском

При низких зимних температурах во время холодного пуска двигателя сильно затвердевают и стареют резиновые прокладки. Кроме того, на морозе газ теряет способность испаряться, поэтому повышается вероятность залива свечей зажигания.

Поэтому важно придерживаться правильного алгоритма запуска двигателя на морозе. Вначале нужно завести машину на бензине, прогреть мотор, газовый редуктор до рабочей температуры, а уже после этого переходить на газ. Следует помнить, что для ДВС крайне необходимо периодически работать на бензине.

Смотрите также:

А есть ли явные минусы?

Недостатки установки ГБО на легковой автомобиль можно перечислить по пунктам:

  • высокая стоимость установки;
  • увеличение общей массы автомобиля;
  • потеря полезного пространства багажника;
  • снижение динамики разгона и скорости, необходимость дополнительной регулировки зажигания;
  • недостаточное количество газовых заправок;
  • неполная заправка из-за особенностей оборудования.

Смотрите также:

Каждый водитель самостоятельно определяет для себя целесообразность ГБО. Важно доверить данную работу исключительно профессионалам, а в процессе эксплуатации проводить регулярное ТО.

[democracy]

[democracy]

Автор: Баранов Виталий Петрович

Образование: среднее специальное. Специальность: автослесарь. Профессиональная диагностика, ремонт, ТО легковых авто зарубежного производства 2000-2015 г.в. Большой опыт работы с Японскими и Немецкими авто.

okuzove.ru

Газ или бензин - в чем счастье?

Что лучше газ или бензин?

Посредством установки ГБО можно переоборудовать автомобиль для работы на газе в качестве топлива. А действительно ли стоит это делать и почему газ лучше бензина (дизеля)?

Давайте разберёмся. Установить ли газ на автомобиль или оставить на бензине?

Чтобы оценить преимущества работы автомобиля на газе, как для самого автомобилиста, так и для ДВС, необходимо понять саму «физику процесса».

Рассмотрим физико-химические свойства топлива: пропана, бутана, бензина и дизеля.

Как видно из таблицы, физико-химические свойства разных видов топлива значимо отличаются, что определяет разницу в степени воздействия на двигатель и эксплуатационные характеристики автомобиля.

Рассмотрим подробнее.

Безопасность: сравним газ и бензин

И бензин, и газ и сам автомобиль являются источниками повышенной опасности. Это значит, что бывает, они горят, при наступлении определённых условий (удара, дтп, возгорания и.т.д.).

В таких условиях, можно говорить лишь об относительной безопасности всех видов топлива.

Наиболее безопасный среди рассматриваемых видов топлива – газ.

Это обусловлено более широкими пределами воспламенения газа, в сравнении с бензином. Предел воспламеняемости – это характерные для того или иного вида топлива граничные значения, при которых возможно самовозгорание смеси при соприкосновении определённых пропорций газовой или бензиновой смеси с воздухом.

Как ранее и говорилось, - горит всё, однако, бензин и дизель начинают горение уже при температуре около 250 градусов, в то время как температура возгорания газа порядка 550 градусов (!).

При возникновении значительной утечки (при нештатной ситуации) бензин загорится быстрее, чем газ, поскольку ему нужно меньшее количество воздуха для воспламенения. Пределы воспламеняемости газа: смесь пропан-бутана - 8,4-9,9% газа в воздухе, нижний предел 1,8-2,4%. Пределы воспламенения бензина в смеси с воздухом составляют соответственно 0,6-1,5%. Таким образом, пределы воспламенения газа на 15-20% выше по сравнению с бензином.

Газ – безусловный лидер по безопасности, исходя из своих физико-химических свойств.

Про дополнительные современные системы защиты газобаллонного оборудования, устанавливаемого на автомобиль, такие как мультиклапан, скоростной клапан, предохранительный клапан, который стравливает газ наружу и защищает баллон от разрушения – см. ГБО

Важно отметить, что такими современными средствами защиты бензиновая система попросту не обладает.

Влияние газа на двигатель

Газ или бензин: что лучше для мотора? Сейчас разберём.

Октановое число (ОЧ): чем выше октановое число, тем меньше детонационное воздействие на двигатель.

У газа октановое число много выше, чем у бензина. Это позволяет избавить двигатель от детонации и увеличить его мощность, за счёт увеличения степени сжатия двигателя.

В отличии от процессов сгорания бензиновой смеси, у газа более полное сгорание газовоздушной смеси. За счёт этого, имеющаяся масляная плёнка на цилиндрах (которая служит для их защиты) не смывается со стенок двигателя, а также уменьшается образование нагара в блоке, что в совокупности снижает изнашивание цилиндров и поршней двигателя.

При переходе двигателя автомобиля с жидкого топлива на газ, срок службы движка возрастает в 1,5-2 раза (согласно исследованиям газоприменения в автомобильной отрасли, выполненных ВНИИГАЗом, см. книгу: «Природный газ моторное топливо на транспорте», авторов И. Грищенко, Ю. Н. Васильев, Ф. Г. Гайнуллин, Л. С. Золотаревский).

Фактически, у двигателя автомобиля появляется «вторая жизнь». Это ответ на вопрос: «Что лучше для двигателя: газ или бензин?»

Кстати сказать, при работе автомобиля на газе, масло меньше «разжижается» и загрязняется, что позволяет менять его реже, а сам расход масла «на угар» снижается в среднем на 15%. Срок службы свечей зажигания увеличивается на 40% (до 85 тыс.км).

Эко-Логичность газа: отмечайте 20 новых праздников

 

Газ более экологичный вид топлива.

В своём составе пропан, бутан и метан не содержат свинца, в отличии от бензина, что делает более чистым выхлоп автомобиля. Кроме того, в автомобилях, работающих на газе, до 90% снижена суммарная токсичность выхлопных вредных газов (окиси углерода, двуокиси азота, углеводородов СН и.т.д.).

Именно поэтому, в жизни автомобилистов, переоборудовавших свой автомобиль на газ появляется больше праздников:  и Всемирный день охраны окружающей среды и День эколога и Всемирный день океанов и Международный день биологического разнообразия и ещё более 20 поводов для радости в году :)

Если праздники вы любите больше, чем будни, то очевидно, что в вопросе «что лучше газ или бензин?» - вы «за» газ!

Экономичность: расход газа и бензина

 

По топливной экономичности газ превосходит бензин и дизель.

Как уже говорилось ранее, октановое число выше у газа, что увеличивает степень сжатия двигателя и позволяет значимо снизить расход топлива.

Цена газа в России в 2,5 раза ниже, нежели розничная стоимость бензина.

Сравним расходы на газ и бензин (из расчёта 300 км пробега в неделю):

ХАРАКТЕРИСТИКИ

БЕНЗИН

ГАЗ

10 литров на 100 км (ср.значение)

10 л х 36 руб (ср.цена 1 литра)

10 л х 16 руб (ср.цена 1 литра)

Стоимость топлива за 100 км

360 руб за 100 км

160 руб за 100 км

Стоимость топлива за 300 км

1080 руб за 300 км

480 руб за 300 км

 

Итого: путешествия и рабочие поездки на газовом автомобиле, оборудованном ГБО обойдутся минимум втрое дешевле!

Счастье в газе

 

Очевидно, что газ лучше бензина для автомобиля.

Как только вы начинаете экономить на топливе, вы радуетесь.

Меньше нагрузки, чище работа – работе на газе порадуется двигатель вашего автомобиля.

Чище воздух вокруг – природа и соседи под окнами, которых вы «прогреваете» свой автомобиль – скажут вам «спасибо».

А когда вокруг всё хорошо, у ваших близких радость, вот тогда и вы – счастливы.

Вот поэтому, счастье – в газе!

УСТАНОВИ СВОЁ СЧАСТЬЕ! 

 

По статистике большинство (более 90%) владевших ранее автомобилем на газе, устанавливают гбо и на все последующие свои автомобили.

autonasto.ru

Температура горения газа и бензина в двигателе


Октановое число газа.

Добиться полного сгорания топлива в бензиновом двигателе невозможно. Именно из-за этого в выхлопе обязательно содержится СО – окись углерода, которая представляет собой вредное для человека вещество. Если сравнивать между собой выбросы газовых и бензиновых двигателей, то на первый взгляд особой разницы между ними не существует: количество углеводородов, поступающих в окружающую среду, и в первом, и во втором случае оказывается примерно одинаковым. Однако опасность представляют не сами углеводороды, а продукты их окисления. В этом плане газовые двигатели имеют несомненное преимущество: выделяемый ими метан отличается от других углеводородов наибольшей устойчивостью к окислению.

Газ превосходит бензин не только по показателю экологичности, но своей энергоэффективностью. В двигателе внутреннего сгорания применяется классический принцип, который основан на использовании четырех циклов. В конечном счете, мощность двигателя зависит от степени сжатия топливной смеси (ее верхний предел ограничивается возможностью детонации, при которой происходит взрыв). Способность топлива противостоять детонации называется октановым числом. Для природного газа этот показатель в среднем равняется 108. О подобном результате любым маркам бензина остается только мечтать.

Еще одно преимущество природного газа перед бензином заключается в том, что его концентрация, необходимая для горения, оказывается более низкой, чем у конкурента. Иными словами, газовый двигатель может обходиться более бедными горючими смесями. Регулируя концентрацию газа в смеси, мы тем самым получаем уникальную возможность управлять мощностью двигателя, который становится заметно более «послушным» по сравнению с бензиновым.

Газовые двигатели примерно в 1,5-2 дольше, чем конкуренты, способны обходиться без ремонта. Это связано с тем, что при сгорании природного газа образуется намного меньше твердых частиц, которые ускоряют процесс износа поршней и цилиндра. Химические свойства газа таковы, что он практически не способствует коррозии металла и не смывает защитную масляную пленку, покрывающую металлические поверхности (в отличие от жидкого топлива).

Справедливости ради следует отметить, что наряду с явными достоинствами у природного газа есть и свои недостатки. Так плотность метана примерно в 1000 раз ниже, чем аналогичный показатель у бензина. Поэтому для того, чтобы в стандартный бак поместилось достаточное количество топлива, его плотность приходится увеличивать искусственно, главным образом – путем сжатия до 200-250 атмосфер. В таком виде метан может храниться лишь в специальных баллонах, устанавливаемых в багажниках автомобилей.

У метана есть одна полезная особенность, которая дает надежду многим автолюбителям. Дело в том, что при низкотемпературном сжижении (температура может опускаться до -1200С) объем этого газа уменьшается примерно в 600 раз. Теперь его можно перевозить в специальных баках, напоминающих бензиновые. Давление в них не будет превышать 6 атмосфер (это примерно соответствует напору воды в домашнем кране). Данная технология не находится на стадии разработки, а уже хорошо освоена и активно используется во многих развитых странах: Японии, США, Норвегии и др. Даже разработаны специальные танкеры, предназначенные для перевозки охлажденного метана.

Добавим также, что это вещество абсолютно безвредно, поскольку при его сгорании образуется лишь углекислый газ и вода.

Альтернативой метану является пропан-бутан – синтетическое топливо, получаемой путем переработки нефти, а также конденсации попутных газов. Чтобы эта смесь оставалась в жидком состоянии, при ее перевозке и хранении необходимо постоянно поддерживать давление в 16 атмосфер.

Конструкция газобаллонного оборудования, работающего на пропан-бутане в целом проще, а заправка такого автомобиля со стороны мал

piter-at.ru

Горение — Википедия

Горе́ние — сложный физико-химический процесс[1] превращения исходных веществ[2] в продукты сгорания в ходе экзотермических реакций, сопровождающийся интенсивным выделением тепла[3][4]. Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде теплового излучения и света. Светящаяся зона называется фронтом пламени или просто пламенем.

Освоение огня сыграло ключевую роль в развитии человеческой цивилизации. Огонь открыл людям возможность термической обработки пищи и обогрева жилищ, а впоследствии — развития металлургии, энергетики и создания новых, более совершенных инструментов и технологий. Управление процессами горения лежит в основе создания двигателей для автомобилей, самолётов, судов и ракет.

Горение до сих пор остаётся основным источником энергии в мире и останется таковым в ближайшей обозримой перспективе. В 2010 году примерно 90 % всей энергии, производимой человечеством на Земле, добывалось сжиганием ископаемого топлива или биотоплив[5], и, по прогнозам Управления энергетических исследований и разработок (США)[en], эта доля не упадёт ниже 80 % до 2040 года при одновременном росте энергопотребления на 56 % в период с 2010 по 2040 год[6]. С этим связаны такие глобальные проблемы современной цивилизации, как истощение невозобновляемых энергоресурсов, загрязнение окружающей среды и глобальное потепление.

Химические реакции горения, как правило, идут по разветвлённо-цепному механизму с прогрессивным самоускорением за счёт выделяющегося в реакции тепла. Особенности горения, отличающие его от других физико-химических процессов с участием окислительно-восстановительных реакций, — это большой тепловой эффект реакции и большая энергия активации, приводящая к сильной зависимости скорости реакции от температуры. Вследствие этого горючая смесь, способная храниться при комнатной температуре неограниченно долго, может воспламениться или взорваться при достижении критической температуры воспламенения (самовоспламенение) или при инициировании внешним источником энергии (вынужденное воспламенение, или зажигание).

Если продукты, образующиеся при сгорании исходной смеси в небольшом объёме за короткий промежуток времени, совершают значительную механическую работу и приводят к ударным и тепловым воздействиям на окружающие объекты, то это явление называют взрывом. Процессы горения и взрыва составляют основу для создания огнестрельного оружия, взрывчатых веществ, боеприпасов и различных видов обычных вооружений. Особым видом горения является детонация.

Жёлтый цвет пламени газовой горелки при внесении в него следов натрия (поваренная соль на проволоке) вызван излучением дублетной D-линии натрия с длинами волн 589 и 589,6 нм

До открытия кислорода в начале 1770-х годов Карлом Шееле и Джозефом Пристли считалось, что все тела, способные гореть, содержат особое начало, «флогистон», которое в процессе горения выделяется из тела, оставляя золу. В 1775 году Лавуазье показал, что напротив, к горючему веществу при горении присоединяется кислород воздуха, а в 1783 году Лавуазье и Лаплас обнаружили, что продукт горения водорода — чистая вода. Эти открытия заложили основу современных научных взглядов на природу горения.

Следующий шаг в развитии основ теории горения связан с работами Малляра и Ле Шателье[7] и В. А. Михельсона, выполненными в 1880-е годы[8]. В 1890 году Михельсон опубликовал работу[9] о распространении пламени в трубах и предложил теорию горелки Бунзена.

В 1928 году Бурке и Шуманн рассмотрели задачу о диффузионном пламени и показали, что когда скорость сгорания реагентов в химической реакции много больше скорости подвода реагентов посредством диффузии, зону реакции можно считать бесконечно тонкой, при этом в ней автоматически устанавливается стехиометрическое соотношение между окислителем и горючим, а максимальная температура в зоне реакции близка к адиабатической температуре горения[10].

Современная теория горения ведёт начало от работ Н. Н. Семёнова по тепловому взрыву[11][12], выполненных в 1920-е годы. Основанный Н. Н. Семёновым в 1931 году Институт химической физики стал ведущим научным центром по химической физике и горению[13]. В 1938 году Д. А. Франк-Каменецкий развил теорию теплового взрыва[14], и, вместе с Я. Б. Зельдовичем, — теорию распространения ламинарного пламени в предварительно перемешанных смесях[15].

В том же 1938 году в опытах А. Ф. Беляева было показано, что горение летучих взрывчатых веществ происходит в газовой фазе[16]. Таким образом, вопрос о скорости горения таких веществ был сведён к вопросу о скорости горения в газовой фазе, и в 1942 году Я. Б. Зельдович развил теорию горения конденсированных веществ, основанную на теории распространения пламени в газе[17].

В 1940-е годы Я. Б. Зельдович развивает теорию детонации[18], которая была названа моделью ZND[en] — по имени Зельдовича, Неймана и Дёринга, так как независимо от него к схожим результатам пришли фон Нейман[19] и Дёринг[20].

Все эти работы стали классическими в теории горения.

По скорости движения смеси горение подразделяется на медленное горение (или дефлаграцию) и детонационное горение (детонацию). Волна дефлаграционного горения распространяется с дозвуковой скоростью, а нагрев исходной смеси осуществляется в основном теплопроводностью. Детонационная волна движется со сверхзвуковой скоростью, при этом химическая реакция поддерживается благодаря нагреву реагентов ударной волной и, в свою очередь, поддерживает устойчивое распространение ударной волны[21][22]. Медленное горение подразделяется на ламинарное и турбулентное соответственно характеру течения смеси[23]. В детонационном горении течение продуктов всегда турбулентное. В определённых условиях медленное горение может переходить в детонацию[24] (англ. DDT, deflagration-to-detonation transition[25]).

Если исходные компоненты смеси — газы, то горение называют газофазным (или гомогенным). В газофазном горении окислитель (как правило, кислород) взаимодействует с горючим (например, водородом или природным газом). Если окислитель и горючее заранее перемешаны на молекулярном уровне, то такой режим называется горением предварительно перемешанной смеси (англ. premixed combustion). Если же окислитель и горючее отделены друг от друга в исходной смеси и поступают в зону горения посредством диффузии, то горение называется диффузионным[26].

Если исходно окислитель и горючее находятся в разных фазах, то горение называется гетерогенным. Как правило, в этом случае реакция окисления также идёт в газовой фазе в диффузионном режиме, а тепло, выделяющееся в реакции, частично расходуется на термическое разложение и испарение горючего[27]. Например, по этому механизму горят уголь или полимеры в воздухе. В некоторых смесях могут иметь место экзотермические реакции в конденсированной фазе с образованием твёрдых продуктов без существенного газовыделения. Такой механизм называется твердофазным горением.

Выделяют также такие особые виды горения, как тление, беспламенное и холоднопламенное горение.

Горением, или ядерным горением, называют термоядерные реакции в звёздах, в которых в процессах звёздного нуклеосинтеза образуются ядра химических элементов[28].

Пламя — это светящаяся зона, образующаяся в ходе горения. Температура пламени зависит от состава исходной смеси и условий, при которых осуществляется горение. При горении природного газа в воздухе температура в горячей зоне может превышать 2000 К, а при горении ацетилена в кислороде (газовая сварка) — 3000 К[29].

Цвет пламени[править | править код]

В зоне горения могут возникать свободные радикалы и молекулы в электронно-возбуждённых и колебательно-возбуждённых состояниях. Если интенсивность свечения достаточно высока, то его можно воспринимать невооружённым глазом. Цвет пламени определяется тем, на каких частотах идут квантовые переходы, вносящие основной вклад в излучение в видимой области спектра. Значительная часть излучения, особенно при наличии твёрдой фазы, пылинок или частиц сажи в пламени, приходится на инфракрасную область, которая субъективно воспринимается как жар от огня. В инфракрасное излучение вносят вклад колебательно-возбуждённые молекулы CO, CO2 и H2O.

При горении водорода в чистом воздухе пламя почти бесцветное. Оно имеет едва заметный голубоватый оттенок из-за излучения радикалов OH в оптическом диапазоне на длинах волн 306—308 нм[30]. Однако обычно водородное пламя в воздухе светится сильнее из-за присутствия пылинок и органических микропримесей.

Пламя при горении углеводородных топлив в горелке Бунзена, таких как пропан или бутан, может иметь разный цвет в зависимости от соотношения горючего и воздуха. При горении в диффузионном режиме без подачи воздуха в горелку пламя окрашено в жёлтый или красноватый цвет, обусловленный свечением раскалённых микрочастиц сажи. При подмешивании небольшого количества воздуха на выходе из горелки возникает неяркий синий конус пламени. Дальнейшее увеличение подачи воздуха приводит к возникновению двух конусов пламени, внутреннего яркого сине-зелёного и внешнего сине-фиолетового, гораздо менее интенсивного[31].

Способность примесей окрашивать пламя в различные цвета используется в аналитической химии для пирохимического анализа и в пиротехнике для салютов, фейерверков и сигнальных ракет.

Электрические свойства пламени[править | править код]

Пламя углеводородных топлив может взаимодействовать с электромагнитным полем, то есть в нём присутствуют заряженные частицы. Экспериментально обнаружено, что концентрация ионов в пламени может на 4—6 порядков превышать концентрацию, которая наблюдалась бы при чисто термическом механизме ионизации, и фактически пламя может вести себя как слабоионизованная плазма. Однако температура пламени недостаточна для того, чтобы компоненты смеси могли ионизироваться в результате столкновений молекул между собой, и в 1950-е годы выяснилось, что основным механизмом генерации ионов является хемоионизация[32].

Считается, что хемоионизация идёт в основном через образование иона CHO+[33], хотя в пламени отмечается присутствие и других ионов[34]. В отсутствие углерода ион CHO+ не образуется, поэтому концентрация ионов в пламени чистого водорода в чистом кислороде очень мала. Концентрация ионов существенно повышается, если в газе присутствуют даже следовые количества органических веществ, при этом проводимость пламени сильно увеличивается. Это явление используется в пламенно-ионизационных детекторах газовых хроматографов.

Взаимодействие пламени с электромагнитным полем открывает новые возможности для управления процессами горения и создания перспективных технологий на их основе[35].

Несмотря на большой опыт использования на практике, процессы горения остаются одними из наиболее сложных для научного изучения. Наука о горении является в высшей степени междисциплинарной, лежащей на стыке таких научных дисциплин, как газодинамика, химическая термодинамика, химическая кинетика, молекулярная и химическая физика, тепломассообмен, квантовая химия и физика, материаловедение и компьютерное моделирование[36].

Полнота сгорания[править | править код]

Исходный состав горючей смеси характеризуется молярными или массовыми долями компонентов и начальными давлением и температурой. Если состав смеси подобран так, что при её сгорании и горючее, и окислитель способны полностью превратиться в продукты реакции, то такая смесь называется стехиометрической. Смеси с избытком горючего, в которых горючее не способно сгореть полностью из-за нехватки окислителя, называются богатыми, а смеси с недостатком горючего — бедными. Степень отклонения состава смеси от стехиометрического характеризуется коэффициентом избытка горючего (англ. equivalence ratio)[37]:

ϕ=YF/YO(YF/YO)st{\displaystyle \phi ={\frac {Y_{F}/Y_{O}}{(Y_{F}/Y_{O})_{st}}}}

где YF и YO — массовые доли горючего и окислителя соответственно, а (YF/YO)st — их отношение в стехиометрической смеси. В русскоязычной литературе используется также коэффициент избытка окислителя (или воздуха), обратный коэффициенту избытка горючего.

Теоретически стехиометрическая смесь способна сгорать полностью. Однако на практике реагенты никогда не превращаются полностью в продукты реакции, как из-за несовершенства конструкции камеры сгорания, так и из-за того, что химические реакции горения не успевают пройти до конца. Поэтому в действительности горение всегда является неполным, а увеличение полноты сгорания служит одним из направлений совершенствования энергетических установок. В технике часто используются смеси, отличные от стехиометрической. Например, при запуске холодного двигателя автомобиля топливовоздушная смесь обогащается для облегчения запуска, а для снижения вредных выбросов, таких как NOx и CO, применяются обеднённые смеси.

Термодинамика горения[править | править код]

Адиабатическая температура горения смесей CH4 с воздухом в зависимости от коэффициента избытка топлива. P = 1 бар, T0 = 298,15 K

Если горение происходит адиабатически при постоянном объёме, то сохраняется полная внутренняя энергия системы, если же при постоянном давлении — то энтальпия системы. На практике условия адиабатического горения приближённо реализуются в свободно распространяющемся пламени (без учёта теплопотерь излучением) и в других случаях, когда потерями тепла из зоны реакции можно пренебречь, например, в камерах сгорания мощных газотурбинных установок или ракетных двигателей.

Адиабатическая температура горения — это температура продуктов, достигаемая при полном протекании химических реакций и установлении термодинамического равновесия. Для термодинамических расчётов используются таблицы термодинамических функций[38] всех компонентов исходной смеси и продуктов. Методы химической термодинамики позволяют рассчитать состав продуктов, конечное давление и температуру при заданных условиях сгорания. В настоящее время доступно много программ, способных выполнять эти расчёты[39][40].

Теплота сгорания — это количество теплоты, выделившейся при полном сгорании исходных компонентов, то есть до CO2 и H2O для углеводородных топлив. На практике часть выделившейся энергии расходуется на диссоциацию продуктов, поэтому адиабатическая температура горения без учёта диссоциации оказывается заметно выше той, что наблюдается в эксперименте[41].

Термодинамический расчёт позволяет определить равновесный состав и температуру продуктов, но не даёт никакой информации о том, с какой скоростью система приближается к равновесному состоянию. Полное описание горения требует знания механизма и кинетики реакций и условий тепло- и массообмена с окружающей средой.

Кинетика горения[править | править код]

Подробная кинетическая схема реакций при горении даже самых простых углеводородных топлив, таких как метан, включает десятки или даже сотни компонентов, участвующих в сотнях элементарных химических реакций[42]. При моделировании таких больших механизмов возникают значительные вычислительные трудности. Они обусловлены тем, что характерное время протекания отдельных реакций может различаться на много порядков величины, и соответствующие системы дифференциальных уравнений оказываются жёсткими (англ. stiff), что существенно затрудняет численное решение. Поэтому в практических расчётах процессов горения используются три подхода [43]:

  • Глобальный механизм. В нём используется эмпирическая кинетическая схема с одной или несколькими стадиями, позволяющая выполнять расчеты двух- и трёхмерных течений, в том числе турбулентных. Например, для горения метана может использоваться следующая одностадийная схема:
Ch5+2O2→CO2+2h3O{\displaystyle CH_{4}+2O_{2}\rightarrow CO_{2}+2H_{2}O}
с кинетическими параметрами, подбираемыми по экспериментально измеренной скорости пламени[44].
  • Полный механизм. В полной кинетической схеме учитываются по возможности все наиболее важные компоненты и элементарные реакции. Такие схемы используются для моделирования одномерных ламинарных пламен, так как мощности современных компьютеров все ещё недостаточны для многомерных расчётов с подробными схемами. Кроме того, данные о константах скоростей элементарных реакций пока не могут быть получены в эксперименте или рассчитаны теоретически с достаточной точностью.
  • Сокращённый механизм. В схеме на основе анализа отдельных стадий устраняются малозначительные компоненты и реакции. В результате число компонентов и реакций в схеме уменьшается, и становится возможным выполнять многомерные расчёты, учитывающие важные кинетические эффекты.

Реактор идеального перемешивания[править | править код]

В заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём объёме, занятом горючей смесью (объёмное горение), или в узкой зоне (фронт пламени), разделяющей исходную смесь и продукты и распространяющейся в виде так называемой волны горения. Объёмное горение может быть организовано в гомогенном реакторе идеального перемешивания, в который поступает исходная смесь при температуре Т0. На выходе из реактора смесь имеет температуру ТbТ0, которая устанавливается в соответствии с текущим режимом работы реактора. В таком реакторе могут иметь место множественные стационарные режимы, явления гистерезиса, а также нестационарные режимы и автоколебания[45]. Все эти явления характерны для теории горения в силу нелинейности её уравнений.

Ламинарное горение[править | править код]

При небольших скоростях течения смеси горение может осуществляться в ламинарном режиме. Так горят, например, свеча (диффузионное горение) или бытовая газовая плита (горение предварительно перемешанной смеси) при небольших расходах газа.

В предварительно перемешанной смеси фронт пламени движется относительно исходной смеси со строго определённой скоростью, называемой скоростью ламинарного пламени. Эта скорость зависит от исходного состава смеси, её давления и температуры, но не зависит от условий зажигания. Скорость ламинарного пламени для метана и большинства других углеводородных топлив в нормальных условиях в воздухе может варьироваться примерно от 10 до 70 сантиметров в секунду[46]. Скорость горения смесей водорода с воздухом (гремучий газ) достигает нескольких метров в секунду и может восприниматься как взрыв.

Ламинарное пламя может распространяться только в смеси, состав которой не выходит за границы диапазона так называемых концентрационных пределов. Нижний и верхний концентрационные пределы соответствуют минимальному и максимальному коэффициенту избытка топлива, при котором пламя ещё может распространяться по смеси. Для метана в воздухе они составляют примерно 5 и 15 объёмных процентов[47]. Взрывы бытового газа возникают тогда, когда в плохо вентилируемом помещении превышается нижний концентрационный предел, и из-за искры или другого источника смесь воспламеняется. Этот же эффект приводит к взрывам метана в шахтах.

Помимо концентрационного предела существует также предел по диаметру распространения пламени в трубе. В трубе диаметром меньше критического пламя распространяться не может из-за больших теплопотерь в стенки и гибели активных радикалов на стенке[48]. На этом принципе основана безопасная лампа Дэви, в которой применяется открытый огонь, но пламя закрыто металлической сеткой и не вызывает взрыва метана в шахтах.

Турбулентное горение[править | править код]

Турбулентное горение, то есть горение смеси, течение которой является турбулентным — это наиболее часто встречающийся в практических устройствах режим горения и одновременно наиболее сложный для изучения[49]. Турбулентность остаётся одной из немногих нерешённых проблем классической физики[50]. Законченной теории турбулентных течений, в том числе и в отсутствие в них химических реакций, до сих пор не существует.

Взаимодействие турбулентного потока с фронтом горения дополнительно усложняет анализ. Даже на качественном уровне влияние горения на турбулентность и обратное влияние турбулентности на горение может приводить к противоположным эффектам[51]. Горение может как интенсифицировать турбулентность, за счёт дополнительного тепловыделения, так и наоборот, уменьшать её из-за увеличения вязкости с повышением температуры.

С другой стороны, турбулентность как бы сминает фронт пламени, увеличивая площадь фронта. Вследствие этого резко возрастает тепловыделение в потоке, то есть увеличивается мощность всей системы. Турбулентность также интенсифицирует процессы смешения компонентов, если исходно они не были перемешаны. По этой причине на практике в системах, от которых требуется высокая мощность — двигателях, топках, газотурбинных установках — используется именно турбулентный режим. Однако чрезмерно интенсивная турбулентность может погасить пламя. Управлять турбулентным потоком сложно. В нём постоянно возникают стохастические пульсации скорости и давления, которые могут вызывать неустойчивости горения и приводить к разрушению конструкции горелки и авариям. Пульсации температуры приводят к тому, что смесь сгорает неравномерно, в результате чего в выбросах увеличивается содержание вредных веществ.

Описание турбулентного горения требует применения компьютерного моделирования. При этом, как и для нереагирующих течений, могут применяться три подхода для численного решения уравнений Навье-Стокса, развиваемые в вычислительной гидродинамике: RANS — усреднённые по числу Рейнольдса уравнения Навье-Стокса, LES — метод крупных вихрей и DNS — прямое численное моделирование[52].

Компьютерное моделирование горения[править | править код]

Важность процесса горения в технических устройствах вместе с дороговизной натурных экспериментов способствует быстрому развитию компьютерного моделирования горения. Модели процессов горения основаны на законах сохранения массы, импульса и энергии в многокомпонентной реагирующей смеси. Уравнения теории горения — это уравнения непрерывности для смеси в целом и всех отдельных компонентов, уравнение Навье-Стокса для сжимаемой среды и уравнение переноса тепла с химическими источниками[53]. С подробными кинетическими схемами эта система дифференциальных уравнений в частных производных чрезвычайно сложна, и до настоящего времени не существует универсальных численных схем, которые могли бы применяться во всех режимах горения и температурных диапазонах. Поэтому такие схемы строятся для частных случаев, позволяющих дополнительно упростить систему уравнений.

В одномерном случае для медленного горения (ламинарное пламя) разработаны эффективные методы решения системы уравнений, в том числе для подробных кинетических схем, и доступны пакеты программ, решающих эти задачи. В исследованиях чаще всего используются коммерческие пакеты CHEMKIN и Cosilab, а также свободное ПО Cantera.

В двух- и трёхмерном случаях до сих пор чаще всего применяется глобальная кинетическая схема. Такой подход реализован, например, в пакетах ANSYS FLUENT и KIVA, однако вместе с увеличением мощности компьютеров появляются и расчёты с сокращёнными кинетическими схемами[54] и подробными схемами. Для решения таких задач используются суперкомпьютеры[55].

Гетерогенными процессами, в противоположность гомогенным, в химии и физике называют процессы, происходящие в гетерогенных системах, то есть системах, содержащих более одной фазы (например, газ и жидкость), а также процессы, происходящие на границе раздела фаз. В исследованиях по горению термин гетерогенное горение используется для систем, в которых топливо и окислитель исходно находятся в разных фазах[27], даже если в процессе топливо испаряется, и сами химические реакции происходят в газовой фазе. Типичным примером является горение угля в воздухе, в котором углерод может реагировать с кислородом на поверхности частиц угля с образованием угарного газа. В дальнейшем угарный газ может догорать в газовой фазе и образовывать углекислый газ, а в некоторых режимах топливо может испаряться с поверхности частиц и окисляться как газообразный углерод в газовой фазе. Несмотря на различие механизмов, все эти режимы формально относятся к гетерогенному горению.

Гетерогенное горение чрезвычайно важно в практических приложениях горения. Большинство топлив удобнее хранить и транспортировать в жидком виде (в том числе сжиженный природный газ). Рабочие процессы в топках, двигателях внутреннего сгорания, дизельных двигателях, воздушно-реактивных двигателях, жидкостных ракетных двигателях — это гетерогенное горение, а оптимизация процесса испарения и смешения топлива и окислителя для их подачи в камеру сгорания — важная составная часть оптимизации всего процесса горения в рабочих системах.

Практически все пожары — это также гетерогенное горение, однако взрывы бытового газа относятся к гомогенному горению, так как исходно и горючее, и окислитель — это газы.

Для повышения энергетических характеристик твёрдых топлив в них могут добавляться металлы. Такие топлива могут использоваться, например, для скоростных подводных торпед, так как чистый алюминий хорошо горит в воде[56]. Горение алюминия и других металлов происходит по гетерогенному механизму[57].

Твёрдые топлива находят основное применение в огнестрельном оружии, артиллерийских и реактивных снарядах, а также в тактических ракетах и межконтинентальных баллистических ракетах. Твердотопливные ускорители применялись для вывода на околоземную орбиту многоразовых шаттлов.

Горение порохов в канале оружейного ствола или в камере пороховой ракеты изучает внутренняя баллистика.

Состав твёрдых топлив[править | править код]

Твёрдые топлива, используемые в твердотопливных ракетных двигателях, делятся на два типа: баллиститные и смесевые. В баллиститных твёрдых топливах нет разделения на горючее и окислитель — это вещество или смесь химических веществ, которые сгорают послойно. Обычно их называют баллиститными или гомогенными порохами. Основной компонент таких порохов — нитроцеллюлоза. При изготовлении твёрдого топлива нитроцеллюлоза желатинизируется в растворителе, обычно в нитроглицерине. Для удобства изготовления и стабильности при хранении в смесь вводят технологические добавки, улучшающие механические и эксплуатационные свойства. Общее название таких порохов — бездымные, а в зарубежной литературе — двухосновные (англ. double base)[58].

Смесевые топлива представляют собой смесь двух или более компонентов. Компоненты — это механически перемешанные частицы окислителя и горючего в виде порошков или гранул размером до десятых долей миллиметра. В качестве окислителя используются перхлораты (обычно перхлорат аммония или перхлорат калия) и нитраты, например, нитрат аммония и нитраты щелочных металлов. В качестве горючего — органические вещества, например, предельные олефиновые полимеры (полипропилен). Для повышения удельного импульса ракетного топлива в топливо вводят мелкодисперсные частицы металлов (порошки), такие как алюминий, магний, бериллий.

Пороховые заряды ракетных двигателей должны иметь высокую механическую прочность, во избежание разрушения пороховой шашки в процессе горения при работе ракетного двигателя. Поэтому при изготовлении зарядов смесевых топлив в смесь добавляют полимерные связующие — эпоксидные смолы, резины и иные полимеры.

Горение заряда твёрдого топлива в твердотопливном ракетном двигателе происходит по поверхности топлива и не распространяется внутрь заряда, если на поверхности нет трещин. Трещины или поры в заряде могут привести к нерасчётному увеличению поверхности горения и тяги двигателя, прогоранию корпуса и авариям.

Механизм горения твёрдых ракетных топлив[править | править код]

Физическая картина процессов, происходящих при горении твёрдых топлив, достаточно сложна и включает несколько стадий разложения пороха в последовательности экзотермических реакций в конденсированной и газовой фазе. По результатам исследований горения баллиститного пороха Н в вакууме П. Ф. Похил[59][60] установил, что при давлении ниже 2 мм рт. ст. экзотермическая химическая реакция идёт только в приповерхностном слое конденсированной фазы (беспламенное горение). В диапазоне давлений от 5 мм рт. ст. до примерно 15—20 атм реакция идёт в газовой фазе, и пламя заметно только в темноте (однопламенное или холоднопламенное горение). При дальнейшем повышении давления (свыше 15—20 атм) на некотором расстоянии от поверхности возникает вторая зона яркого пламени. Расстояние от этой зоны до поверхности вещества быстро уменьшается с ростом давления, и примерно при 60—70 атм эта зона сливается с первой зоной[61].

Полного описания механизма реакций всех этих стадий не существует. Считается, что в конденсированной фазе происходит разрыв химических связей CO—NO2 и выделяются окислы азота (NO2 и NO) и альдегиды, в первой зоне пламени NO2 реагирует с альдегидами, а во второй зоне идут реакции с участием NO и CO[62].

Скорость горения твёрдых топлив обычно аппроксимируют эмпирической степенной зависимостью: u=A+B(PP0)ν{\displaystyle u=A+B\left({\frac {P}{P_{0}}}\right)^{\nu }} где P0{\displaystyle P_{0}} обычно принимается равным атмосферному давлению (101,325 кПа). Показатель ν{\displaystyle \nu } варьируется в пределах от 0,7 для низких давлений (P{\displaystyle P} = 1—20 атм) до 1 для высоких (P{\displaystyle P} > 60 атм) давлений, что объясняют сменой ведущей зоны тепловыделения в химических реакциях[62].

В камерах сгорания ракетных двигателей поверхность горящего пороха обдувается газовым потоком продуктов горения. Возрастание скорости горения топлива с ростом скорости обдувающего потока было обнаружено

ru.wikipedia.org

Газовый двигатель — Википедия

Автомобильная газозаправочная станция в Казани

Газовый двигатель — двигатель внутреннего сгорания, использующий в качестве топлива сжиженные углеводородные газы (пропан-бутан) или природный газ (метан).

Газовый двигатель работает по тепловому циклу Отто, когда теплота подводится к рабочему телу при постоянном объёме. Отличие от бензиновых двигателей, работающих по этому циклу — более высокая степень сжатия (около 17-ти). Объясняется это тем, что используемые газы имеют более высокое октановое число, чем бензин.

В 1930-е—1940-е годы в связи с нехваткой бензина широкое распространение получили газогенераторные автомобили. На автомобиль устанавливался газогенератор, из древесных чурок производился генераторный газ. В связи с низкой калорийностью газа (состав: окись углерода и водород) эти типы двигателей ушли в прошлое.

Как правило, газовые двигатели редко выпускаются серийно, за исключением применения их для специализированных задач в науке и технике.

Для работы на транспорте используются газовые двигатели, переоборудованные из традиционных бензиновых, а с недавнего времени — после развития в Европе соответствующих технологий — и из традиционных дизельных.

По причине более высокой степени сжатия дизельные двигатели более полно раскрывают потенциал газового двигателя по сравнению с бензиновыми «собратьями». Однако, переоборудование дизелей под использование газа имеет свои особенности. По причине того, что газ не воспламеняется, подобно дизельному топливу, при увеличении давления в цилиндре на такте сжатия, необходимо дооборудование дизелей системой зажигания (подобно бензиновым вариантам), либо использование в топливо-воздушной смеси части дизельного топлива в виде т. н. «запальной дозы» (от 30 до 50 % от всего количества топлива). В остальном, применение газа на дизельных двигателях все больше приобретает популярность, и обещает в ближайшие годы получить широкое распространение, как в виде газовых двигателей в «чистом виде», так и в универсальных газодизелях.

В целом, переоборудование двигателей внутреннего сгорания на транспорте под газовый двигатель существенно экономит средства их владельцам по причине более низкой отпускной цены на такой вид топлива.

Устройство и принцип работы газобаллонного автомобиля[править | править код]

Газозаправочная аппаратура на автомобиле Карбюратор-смеситель

Автомобиль, оснащённый газобаллонным оборудованием (ГБО), использует в качестве топлива сжиженный нефтяной газ (смесь газов «пропан-бутан») или сжатый природный газ (метан).

На автомобиле сжиженная пропан-бутановая смесь находится в баллонах, установленных на раме, под полом салона автобуса или в багажнике легкового автомобиля. Сжиженный газ находится в баллоне под давлением до 16 атмосфер (баллон рассчитан на максимальное давление 25 атмосфер).

На баллоны для сжиженного газа устанавливается специальный мультиклапан, через который производится заправка баллона и отбор газа в топливную систему двигателя. Мультиклапан является важным компонентом газобаллонного оборудования, обеспечивающим его безопасное использование. Он включает в себя[1]:

  • Заправочный и расходный вентиль
  • Указатель уровня газа в баллоне. Представляет собой поплавок на рычаге, находящийся внутри баллона, и связанный с ним стрелочный индикатор либо электронную схему, передающую информацию о положении поплавка на индикатор внутри салона автомобиля
  • Обратный клапан в заправочной магистрали, предотвращающий вытекание газа через неё
  • Скоростной клапан в расходной магистрали, перекрывающий подачу газа при превышении его расходом некоторого порогового значения. Порог подобран так, чтобы клапан закрывался только при разрыве расходной магистрали (предотвращая, таким образом, сильную утечку газа), и оставался открытым при обычном уровне расхода газа.
  • Стопорный клапан, предотвращающий наполнение баллона газом более чем на 80-90 %%. Клапан находится в заправочной магистрали и закрывается при достижении указанной степени заполнения баллона. Ограничение максимального наполнения баллона необходимо для предотвращения чрезмерного повышения давления в нём в случае нагрева (например, на солнце в жаркую погоду)

Мультиклапан также может содержать в себе предохранительный клапан (стравливает газ при высоком давлении, например при перегреве баллона), пробку из легкоплавкого сплава (не допустить взрыва баллона при пожаре, сбросить газ в атмосферу, чтобы он просто сгорел) и дополнительный вентиль для отбора в двигатель паровой фазы при запуске холодного двигателя. Однако, наличие данных компонентов в мультиклапане не обязательно.

Баллоны для сжатого природного газа находятся на раме, под полом салона автобуса или на его крыше. Сжатый метан находится под давлением до 200 атмосфер. Несколько баллонов объединены в общую магистраль, имеется общий заправочный вентиль, каждый баллон также имеет собственный вентиль.

Газ из общей магистрали поступает в испаритель (подогреватель) — теплообменник, включён в систему жидкостного охлаждения, после прогрева двигателя газ подогревается (сжиженный газ испаряется) до температуры ≈75 °C. Далее газ проходит через магистральный фильтр.

Затем газ поступает в двухступенчатый газовый редуктор, где его давление снижается до рабочего. Современные газовые редукторы обычно совмещают эти два устройства (испаритель и собственно редуктор) в едином устройстве[2].

Далее, газ поступает в смеситель (или в карбюратор-смеситель или в смесительную проставку под штатным карбюратором, определяется конструкцией топливной аппаратуры). В силу того, что в смесителе происходит смешивание двух газов, их конструкция существенно проще чем конструкция бензиновых карбюраторов[3], в которых происходит смешивание двух разных фаз — жидкой (бензин) и газообразной (воздух), из-за чего в конструкции карбюратора имеются довольно сложные системы для поддержания постоянного состава смеси при разных расходах.

Двигатели разделяются на:

  • специальные (или модифицированные), предназначенные только для работы на газе, бензин используется краткосрочно при неисправности газовой аппаратуры, когда нет возможности произвести ремонт на месте;
  • универсальные, рассчитанные на длительную работу как на газе, так и на бензине.

Бензобак и топливный насос на автомобилях с газовыми двигателями сохраняются.

В холодное время года запуск двигателя, работающего на сжиженном газе производится путём отбора паровой фазы, после прогрева испарителя происходит переключение на жидкую фазу. Однако, для бензиновых двигателей, переоборудованных для работе на газе, крайне рекомендуется[4] пуск двигателя осуществлять на бензине, а на газ двигатель переключать после прогрева до температуры 40-50 °C.

ru.wikipedia.org

Температура самовоспламенения — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2016; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2016; проверки требуют 3 правки.

Температура самовоспламене́ния — наименьшая температура горючего вещества, при нагреве до которой происходит резкое увеличение скорости экзотермических объёмных реакций, приводящее к возникновению пламенного горения или взрыва. Эта температура требуется для достижения энергии активации реакции горения.

Из-за сложностей прямого измерения температуры самовоспламенения газов и паров, за неё принимают минимальную температуру стенки реакционного сосуда, при которой наблюдают самовоспламенение. Эта температура зависит от условий тепломассообмена как внутри реакционного сосуда, так и самого сосуда с окружающей средой, объёма смеси, а также каталитической активности стенки сосуда и ряда других параметров.

Показатель применяется для определения допустимой температуры нагревания горючих веществ, электрического и технологического оборудования, а также для установления группы взрывоопасной смеси. Для измерения температуры самовоспламенения жидкостей используют метод ASTM E 659.

Температура самовоспламенения некоторых веществ[править | править код]

По данным ГОСТ Р 51330.19-99 Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования

  1. ↑ В отличие от остальных веществ, температура воспламенения которых не меняется, у бензина эта величина будет меняться в зависимости от углеводородного состава
  • ГОСТ 12.1.044—89 (ИСО 4589—84) «Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения»
  • Корольченко А. Я.,Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х ч. — 2-е изд., перераб. и доп. — М.: Асс. "Пожнаука", 2004. — Ч.I. — 713 с. — ISBN 5-901283-02-3, УДК (658.345.44+658.345.43)66.

ru.wikipedia.org

основы двс. детонация или горение. + видео — DRIVE2

Статья для того, чтобы народ лучше понимал как происходит такт рабочего хода двигателя… очень простым и понятным языком.

Как обычно люди воспринимают горение какого либо топлива? самый простой пример это костер из дров или газ в газовой плите. медленный и постепенный процесс.

Как обычно люди воспринимают взрыв какого либо топлива? хлопок или другой громкий звук, какая-нибудь ударная волна, которая что-нибудь ломает, например разбиваются стекла где-то рядом, и возможно грибок дыма и/или огня в воздухе. если мощный взрыв, то большой гриб.

воспламенение газа в доме, если кто-то не закрыл газ, или паров бензина в гараже всегда воспринимается как взрыв, как в фильмах. спичка или телефонный звонок и дом разлетается на куски.

по такой логике пары бензина, а точнее топливо-воздушная смесь из бензина и воздуха в двигателе взрываются от каждой искры и газы от сгорания двигают поршни. вот, мол, двигатель потому и ревет как ужаленный и разгоняет машину.

это бытовое понятие взрыва. ничего не имеющего общего с настоящим взрывом.

все о чем было сказано выше, это обычное горение, как дрова. с той лишь небольшой разницей, что скорость этого горения очень отличается. то, что горит медленно, мы называем горит, что горит очень быстро, мы называем взрывается. на самом деле все это обычное горение, что и видно в замедленной съемке, топливо сгорает фронтом пламени от источника пламени пока не сгорит все.

настоящий взрыв называется детонацией. главное отличие в том, что детонация может проходить "мгновенно". у нее качественно другая скорость распространения.
и для детонации не нужна искра.
хороший пример для понимания — нитроглицерин. жидкость которую достаточно просто тряхнуть и она взрывается, не сгорает, а детонирует. как известно раствор нитроглицерина в твердом веществе называется динамит… ну ладно не та тема…
Я люблю Взрывчатые Вещества но не об этом речь.

итак, бензин. не детонирует как нитроглицерин, при нормальных атмосферных условиях, но это не значит, что нельзя его заставить детонировать. в правильных пропрорциях с воздухом (как раз как в бензиновом двигателе…) при высоком давлении и температуре можно довести до детонационного порога когда он будет взрываться и без помощи свечи зажигания, при этом детонационное горение идет так быстро, что поршень просто не успевает сколько нибудь существенно двигаться. вся энергия взрыва разом бъет по камере сгорания вызывая звон стенок блока цилиндров, как удар молотком по пустому ведру. этот звук слышен как треск из двигателя. и все знают что это детонация и что это плохо. при детонации энергии выделяется не больше, чем при обычном горении. но нагрузка значительно выше потому, что нормальный процесс горения идет медленно!

при нормальном сгорании бензин сгорает не в момент искры на свечке, а в течение всего рабочего хода поршня от ВМТ до НМТ. за счет этого энергия сгорания плавно совершает работу по движению поршня вниз. и чтобы этот процесс медленного сгорания максимально эффективно отработал требуется топливную смесь вовремя поджечь, раньше, чем поршень пойдет вниз, иначе в начале хода вниз давления на поршень не будет, бензин "еще не разгорелся".
поэтому так важен угол зажигания на всех режимах.

топливная смесь горит с разной скоростью в зависимости от:
1. октанового числа, чем выше, тем медленнее горит.
2. состава топливной смеси (бедно-богато)
3. давления развиваемого в конце такта сжатия.

зачем вообще нужен такт сжатия? нельзя ли просто впрыскивать бензин и поджигать не сжимая? можно. но он очень медленно и плохо горит… такой двигатель будет очень слабым. с низким КПД. за счет предварительного сжатия, топливо горит все быстрее и полнее. но… все ближе порог детонационного взрыва.

поэтому все современные двигатели делаются так, чтобы мотор был близко к границе детонационного горения топливо-воздушной смеси. но не детонировал, а то развалится.

вам уже не нужно быть профессором кафедры ДВС, все уже придумано до вас. с бензином 92 степень сжатия атмосферного мотора можно делать около 10:1 если двигатель имеет правильную камеру сгорания. это отправная точка.
если заливать 98 бензин, степень можно делать 11:1. это увеличивает КПД и мощность.

то есть в среднем стандартный двигатель средней форсировки работает на бензине 92 со степенью 10 без детонации с углом опережения зажигания 25 градусов на режиме максимальной мощности. ну так примерно грубо говоря.

это оптимальная скорость сгорания топлива. оптимальное наполнение двигателя, и оптимальная для данного топлива степень сжатия двигателя. ну и настройка состава топлива и угла зажигания.

все просто.

теперь осталось понять что с этим делать если хочется форсировать мотор. чтобы больше мощности и не развалить мотор детонацией.

да. вы можете залить в этот стандартный двигатель 98 бензин, типа спорт. или там еще 105 или еще круче. правда в том, что этот бензин горит медленнее в тех же режимах что и 92й бензин. и нихера у вас не выйдет. у вас осталась степень сжатия 10. и топливная смесь не сжимается до оптимального режима ее горения. она горит медленно и растет температура выпускных газов. ну и выпускных клапанов.
мотор не сгорит, ибо там есть приличный запас надежности.
более того, он может даже лучше тянуть. дело в том, что плотность бензина с высоким октановым чисом выше. то есть те же 10 литров топлива дают больше веса топлива в килограммах. у вас больше топлива сгорает и это может дать больше мощности, если карта состава топлива не была с перебором…
если нет. то и ехать оно лучше не будет. разница будет в пределах погрешности измерений. зависит от того, какие карты угла и топлива в стандартном контроллере впрыска зашиты.

чтобы на 98 мотор лучше работал вам нужно поднять давление в конце такта сжатия, при том же наполнении двигателя можно поднять степень сжатия…
а можно и увеличить наполнение двигателя…
например предварительным сжатием воздуха с помощью компрессора или турбонаддува.

это очень эффективный способ поднятия давления смеси в конце такта сжатия. и потому очень опасный с точки зрения перебора до уровня детонации.

существует отработанная схема. турбомотор с наддувом 1,5 бар легко работает на 98 бензине и степени сжатия 8,0. если нужен более низкооктановый бензин, то и степень сжатия нужно уменьшать до 7,5 к примеру. или не ставить наддув выше 0,8-1,0 бар

правда эти режимы требуют меньших углов зажигания, так как бОльшее количество топливной смеси горит быстрее.

надоело писать про это.
наконец. детонация бывает частичной. если вся топливная смесь детонирует. мотор сгорит за несколько секунд.
бывает что сгорание начинается от свечи и идет нормально, но до конца не сгорев давление так вырастает, что остаток смеси детонирует. чем выше детонирующая часть, тем сильнее вред мотору. то есть детонация бывает еще и в процентах. если на моторе стоят слабые поршни типа ВАЗ приора, то они дохнут быстрее и терпят маленький процент детонации. поршни старого конструктива под 121й шатун имеют огромный запас прочности. сжечь их это великий талант быть идиотом. я так считаю.
хотя если дунуть 1 бар в сток мотор со степенью 10. никакие поршни не выдержат.
хоть как вы заливайте топливом или углы валите. тут вариантов нет.

для очень трудных вот видео

www.drive2.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта