Частотный диапазон, воспринимаемый человеческим слухом, как уже говорилось, находится в пределах приблизительно от 20 Гц до 20 кГц. Логичнее всего было бы иметь такой динамик, который способен воспроизвести его полностью. И такие динамики есть. Они называются широкополосными.
Вопрос в том, насколько качественно они способны работать в крайних значениях частот этого диапазона. Дело в том, что для эффективного воспроизведения низких частот диффузор классического динамика должен иметь достаточно большие размеры. Например, для частоты 40 Гц его диаметр должен быть около 30 см. Это достаточно просто реализовать.
Широкополосный динамик ScanSpeak 10F/4424G00
Но на высоких частотах такой диффузор попросту не сможет «успевать» передавать колебания всей своей поверхностью. Именно поэтому чаще всего широкополосные динамики являются результатом компромисса.
Для качественного воспроизведения верхней части частотного диапазона в центр диффузора широкополосника зачастую вклеивается дополнительный высокочастотный диффузор — «рупорок» (конус-визер, «дудка»), который способен воспроизводить «быстрые» колебания в то время, как основной, большой диффузор работает гораздо медленнее.
Применяемые в аудиофильских системах широкополосники — предмет серьезных инженерных разработок, граничащих с искусством. Здесь используются материалы с максимально возможными параметрами, ноу-хау, позволяющие все-таки получить полнодиапазонный драйвер.
Широкополосный динамик Lii Audio 2PCS Fast-10
Наиболее проблемным для широкополосного динамика является воспроизведение крайних частот слышимого диапазона. Если широкополосник способен работать в диапазоне 60–16000 Гц с неравномерностью ± 10 дБ — это уже неплохой результат.
При этом в связи с простотой конструкции и отсутствием фильтров (кроссоверов) акустическая система с широкополосником способна демонстрировать высокую чувствительность — от 90–92 дБ и выше. Это делает колонки с широкополосными динамиками особо востребованными среди любителей ламповых усилителей, имеющих, как правило, ограниченную мощность.
В связи с этим голосовые катушки таких широкополосников обладают повышенным сопротивлением. Общепринятые значения для всех остальных динамиков, предназначенных для установки в акустические системы — от 2 до 8 Ом.
Кроме того, именно широкополосный динамик максимально приближен по своим параметрам к точечному источнику звука — идеальному акустическому объекту с точки зрения его локализации. Направление на источник в таком случае определяется слушателем максимально точно. Такой излучатель позволяет создать самую точную стереосцену (звуковую сцену), поскольку источник звука в стереоканале — всего один и он имеет минимальную площадь.
С другой стороны, простейшая колонка с широкополосником — самое дешевое решение, но говорить о полнодиапазонном воспроизведении в этом случае не приходится.
Твитер
Понятно, что, если трудно воспроизвести весь диапазон одним излучателем, есть смысл разделить этот диапазон на несколько частот, в каждой из которых будет работать отдельный динамик. За верхние частоты в этом случае отвечает твитер (пищалка).
Этот динамик должен иметь диффузор (мембрану) небольшой площади, но достаточно жесткий и максимально легкий, ведь полоса излучения твитера, в большинстве случаев, не ниже 1,5 кГц. Среди динамиков наибольшее распространение получил купольный твитер. В нем центральное тело диффузора или элемент, который в полноразмерном динамике называется пылезащитным колпачком, занимает практически всю площадь излучающей поверхности.
Твитер колонки Apple HomePod
Мембрану купольного твитера чаще всего делают из ткани с пропиткой, повышающей ее жесткость. Применяют и более жесткие материалы, лучшим из которых по праву считается бериллий.
Важный параметр твитера — это частота его собственного резонанса. Разработчики стремятся к тому, чтобы она находилась ниже полосы его воспроизведения. В этом случае пищалка звучит максимально точно. Дело в том, что на частотах, близких к резонансу, комплекс усилитель-динамик начинает работать некорректно, «идет в разнос», и система становится плохо управляемой.
Результат — искажения, причем в той частотной области, в которой наш слух к ним особенно чувствителен. Выход оказался прост: кроссовер — устройство, ограничивающее частотный диапазон работы твитера, «обрезает» частоты его собственного резонанса, расположенные ниже рабочего диапазона твитера, который начинается, как правило, от 2–3 кГц.
Твитер с алмазной мембраной Seas Excel E0100-04
Второе требование к твитеру — повышенная верхняя граничная частота воспроизведения. В оптимальном случае она должна превосходить верхний частотный порог слышимого диапазона, т.е. быть выше 20 кГц. Казалось бы, зачем выше, если на этих частотах мы уже не слышим ничего?
Расширенный вверх предел частотного диапазона позволяет твитеру воспроизводить так называемые верхние гармоники, формируя максимально точное звучание высоких частот. До какого предела должен иметь возможность работать твитер — а зачастую высказываются мнения о величинах в 40, а то и в 60 кГц — вопрос, являющийся предметом дискуссий.
Названные два требования к конструкции твитера являются взаимоисключающими. Для понижения резонанса необходимо делать мембрану большего размера и веса, а для повышения верхней границы АЧХ — наоборот. Выход — максимальное соотношение жесткости и массы мембраны твитера, за которое и идет технологическая борьба.
Среднечастотный динамик
Динамик, который играет средние частоты (его еще иногда называют мидренч или, правильнее, мидрейндж — этот термин, от английского midrange speaker, пришел из автозвука), обычно наиболее близок по конструкции к классическому динамику. Важно, что этот динамик воспроизводит именно тот диапазон частот, в котором располагается человеческий голос и на котором наш слух особенно чувствителен к искажениям.
Пример поведения динамика, замеры получены лазерным интерферометром
Ахиллесовой пятой среднечастотника является эффект появления специфических деформаций диффузора — так называемой изгибной волны, когда периферическая область диффузора не успевает за движениями центральной зоны, где крепится голосовая катушка. То есть разные зоны диффузора (кстати, расположенные, как правило, пятнами, а не концентрически, как следовало бы из логики процесса) колеблются не синфазно — одни участки отстают от других.
Звучание становится «рыхлым», неточным. Значит, диффузор должен быть максимально жестким. Если решать проблему в лоб — получим действительно жесткий диффузор, который будет весить так много, что не сможет звучать. Поэтому, как и в твитере, и в широкополоснике, в конструкции диффузора заложен сложнейший компромисс — между жесткостью и легкостью.
Среднечастотный драйвер Morel SCM 634 с карбоновым диффузором
Для колонок высокого класса конструкция диффузоров — важнейший момент. В экзотических вариантах среднечастотники (так же, как и твитеры, но гораздо реже) получают диффузор из бериллия. Но гораздо чаще в среднечастотниках можно видеть диффузоры из композитных материалов на базе углеволокна, стекловолокна, кевлара, древесного волокна или классической целлюлозы.
НЧ-драйвер
Низкочастотный динамик часто еще называют вуфером. Для практически любого класса акустических систем вуфер, естественно, является самым большим по площади излучателем. Для низкочастотника предпочтительным является полностью поршневой режим работы, когда диффузор движется возвратно-поступательно, как единое целое.
Здесь проблема решается еще более радикально, чем в случае со среднечастотным драйвером. Диффузор делают максимально жестким, даже за счет его утяжеления. Дело в том, что на низких частотах наш слух наименее чувствителен к искажениям. И в случае, когда для диффузора вуфера прежде всего важна амплитуда колебаний, ради жесткости идут на увеличение веса.
24-дюймовый басовый динамик в сабвуфере Pro Audio Technology
Масса подвижной системы многих крупных сабвуферных динамиков может достигать 200 г и более. Диффузоры в некоторых случаях получают пространственную конструкцию наподобие самолетного крыла из многослойного композита с заполнением внутренних полостей легкими ячеистыми или сотовыми структурами.
Для аудиофильских систем массу диффузора низкочастотного драйвера по-прежнему стараются минимизировать, поскольку натренированный слух не любит низкочастотных искажений, равно как и всех остальных.
Причем амплитуда колебаний у вуферов — самая большая среди всех перечисленных динамиков. Для этого они оснащаются так называемой длинноходовой (удлиненной) голосовой катушкой. Внешний подвес делается из резины. Все это позволяет диффузору иметь очень большую экскурсию — так называют смещение диффузора от центральной точки.
18-дюймовый басовый вуфер JBL
Особенно ярко «порода» низкочастотного динамика проявляется в драйверах, которые устанавливаются в сабвуферы. Это тяжелое, мощное устройство диаметром от 8 до 15 дюймов (наиболее часто применяемый в пользовательской АС диапазон размеров). Они имеют очень мощные магнитные системы и, в связи с этим, немалый общий вес. При этом в низкочастотных драйверах, работающих от мощных полупроводниковых усилителей, часто устанавливаются катушки минимального сопротивления — 2, а то и 1 Ом.
Коаксиальные драйверы
В двух- трехполосной колонке твитер, среднечастотник и низкочастотный динамик устанавливаются отдельно, то есть, они разнесены в пространстве. Это является серьезным недостатком. Наш слух, который легко определяет направление на источник звука, бывает обманут тем, что средние частоты и высокие частоты поступают практически из разных точек.
Направление на низкочастотный излучатель определить труднее, но тем не менее его удаленность также вносит свою лепту. В результате, такая геометрия колонки ухудшает восприятие стереообраза.
Строение коаксиального драйвера KEF UniQ
Широкополосный динамик, о котором написано выше, просто в силу физики процесса имеет ограничения как по максимальной мощности, так и по частотному диапазону. Кроме того, для широкополосного динамика неизбежна высокая неравномерность АЧХ (выше 10–20 дБ), которую практически невозможно, да и нет смысла компенсировать электроникой либо акустическим оформлением.
Выходом из этой ситуации стал коаксиальный драйвер. На первый взгляд, такой совмещенный динамик выглядит достаточно просто. В двухполосном варианте твитер расположен в центре низкочастотного динамика — традиционные размеры пищалок вполне для этого подходят. Но с инженерной точки зрения такая конфигурация резко затрудняет разработку (расчет) и изготовление подобной системы.
Коаксиальный динамик TAD CST
И это отражается на ее стоимости. Есть варианты, которые позволяют упростить конструкцию: например, размещение твитера перед низкочастотным диффузором на специальном креплении. И все-таки именно «полновесные» коаксиальные системы создают наиболее точный стереоэффект. Поэтому во все времена разные разработчики и компании выпускали коаксиальные драйверы, которые присутствовали в составе их топовых систем.
Специализированные динамики
Воспроизведение звука в условиях, отличных от комнатных, требует применения динамиков, учитывающих эту специфику в свей конструкции. Динамики ландшафтного, шахтного, морского применения должны выдерживать повышенное содержание пыли, способной проникать в магнитный зазор, длительное солнечное излучение, повышенную влажность, воздействие морской соли и других негативных факторов. Для этого в конструкцию вносится серьезные изменения: выбираются материалы, защищаются уязвимые элементы.
Динамики наушников
Для наушников прежде всего пришлось разработать миниатюрные динамики: калибром от 6 до 12 мм для внутриканальных и до 50–60 мм максимум — для накладных моделей. В подавляющем большинстве случаев это широкополосные драйверы. Малый размер облегчает им задачу воспроизведения полного диапазона.
С другой стороны, производство осложняется именно минимальными размерами. Чаще всего диффузор такого динамика сделан из синтетического материала, хотя целлюлоза и другие натуральные волокнистые материалы тоже могут присутствовать. Ввиду требований компактности и низкого веса именно в наушниках наиболее часто используются неодимовые магниты, благодаря которым динамики могут демонстрировать высокую чувствительность — до 120 дБ и выше.
Динамик наушников Apple EarPods
Специфика применения требует, чтобы динамики наушников имели повышенное сопротивление. И если звуковые катушки динамиков акустических систем имеют сопротивление от 2 до 16 Ом (чаще всего от 4 до 8), то динамики наушников имеют сопротивление не ниже 16 Ом, а максимальное значение может достигать 600–800 Ом для профессиональных моделей.
В отдельных моделях наушников, даже внутриканальных, могут использоваться раздельные динамики для разных полос частот — но это редкий случай. Чаще встречается совместное применение излучателей разных типов — динамических и арматурных.
Продолжение следует...
Другие материалы цикла «Акустические системы»:
Акустические системы: поговорим о звуке (часть 1)
Акустические системы: строение динамика (часть 2)
stereo.ru
Подбор динамиков
Достаточно часто нам задают вопрос о том, что делать в случае выхода из строя по той или иной причине одного из динамиков акустической системы. Либо просят совета по замене одних динамиков на другие с целью улучшения качества звука.
Прежде всего, нужно знать, что у каждого динамика есть ряд электрических параметров - так называемых параметров ТС (Тиля-Смола), по которым осуществляется расчёт акустического оформления и кроссовера (фильтра). ТС параметры уникальны для каждого динамика, они не повторяются в разных сериях, а тем более - у разных производителей.
Первая и основная проблема подбора в том, что почти ни один производитель не предоставляет информацию о том, что за динамики устанавливаются в громкоговорители - неизвестна даже марка динамика, поскольку на нём обычно нет никаких опознавательных знаков, и выяснить хоть что-то не представляется возможным. В лучшем случае это будет внутренняя марка или обозначение - ни о чем не говорящий набор букв и цифр.
А вторая, не менее важная проблема в том, что при изготовлении акустики не динамик подбирают под имеющийся корпус и кроссовер, а наоборот - берут динамик и изготавливают под него корпус и кроссовер.
Все это означает, что подобрать аналогичный динамик для серийно производимых колонок либо совсем невозможно, либо такая попытка будет сопряжена с рядом неоправданных усилий и материальных затрат, которые будут практически сопоставимы со стоимостью самой акустической системы.
Однако случается, что производитель акустики использует серийно производимые и поставляемые отдельно динамики таких производителей, как Seas, Morel, Scanspeak, Vifa, Wavecor, Peerless. В этом случае, если такие модели ещё поставляются, можно заменить динамик на точно такой же. Либо, что еще лучше, заменить пару динамиков, чтобы исключить различия параметров разных партий.
Замена же индивидуально производимых динамиков для конкретной акустической системы на другую модель, пусть даже самого именитого производителя, приводит лишь к одному: неизбежному снижению качества звучания, ведь все компоненты конкретной колонки подбираются исключительно для слаженной совместной работы, и замена даже "одного звена" может оказаться для вашей акустики роковой.
Варианты решения проблемы таковы.
Первый - это отправиться в сервис-центр производителя ваших громкоговорителей. Минуса лишь два: срок выполнения ремонта может быть достаточно отдалённым (особенно, если придётся ждать поставку нужного динамика из-за границы), а стоимость работ и материалов окажется весьма ощутимой.
Если же это российский/советский производитель, то, возможно, данные динамики или АС целиком можно купить с рук на радиорынках или по объявлению.
Часто оказывается более оправданным, простым и выгодным другой вариант: все проблемы решит приобретение новых акустических систем. В этом случае вам не придётся сталкиваться с тем рядом сложностей, который описан нами выше.
Исключения возможны только для высокочастотных динамиков. Для их подбора необходимо знать сопротивление и посадочные размеры твитера. Вы можете воспользоваться нашим сервисом подбора ВЧ динамиков. Важно помнить, что результат такой замены не гарантирует качества звучания, а возврату опробованные динамики не подлежат. То есть вы будете проводить данный эксперимент на собственный страх и риск (и за собственный счет), а мы ни коим образом не сможем заранее гарантировать вам результат.
Если же вы точно знаете, что за динамики были установлены в вашей акустической системе, и они входят в наш ассортимент, то вы вполне можете их приобрести и осуществить замену. В этом случае вы получите такой же звук, как и был до поломки.
www.audiomania.ru
Подскажите хорошие динамики для 3- или 4-полосной самодельной акустики / Stereo.ru
Доброго времени суток.
Собираю свою АС. Заданные характеристики: – 2.1 – Комнатная (17-20 кв.м) – 3-полосная (или 4-х...) – Оформление — закрытый ящик. – Внутреннее оформление — сфера(шар), внешнее — прямоугольник. Не спрашивайте, как я реализую внутренний шар))) Сам не решил. Наверное, обращусь к деревообрабатывающим услугам.
Материалы: ясень, дуб или лиственница (самые плотные и тяжелые из доступных), чтобы тяжелым весом полностью устранить вибрацию корпуса + внутри на стенки какую-нибудь вату прилеплю для гашения волн. – Минимальная толщина стенки корпуса (перпендикуляра – радиуса шара) — 20 мм. – ЦАП и усилитель у местных умельцев, наверное, возьму. – Громкость будет ниже средней, но главное — чтобы по максимуму увеличить частотный диапазон.
И самое главное, во что нужно уложиться — габариты: – до 220 мм в ширину – до 220 мм в глубину – до 570 мм в высоту. Это максимально доступный объем для одной колонки. Часть его заберет корпус, поэтому самый большой эквивалентный объем: V сферы = 4/3πr3= 4/3π((220–стенки корпуса 40мм)/2)) = 3 литра.
— Сабвуфер тоже почти в том же акустическом оформлении, только габариты можно увеличить: эквивалентный объем до 14 литров.
Подытожу требования: – Максимально ровная АЧХ (насколько это возможно) – Максимально большой диапазон частот.
Как вы поняли, нужен студийный звук, который до нас хотят донести авторы аудиотрека, поэтому я вычеркнул сразу фазоинвертор и, полагаю, нужен динамик с максимально низкой добротностью.
Вопросы: 1. Подскажите, пожалуйста, наилучшие динамики, которые бы удовлетворяли этим условиям. Зашёл в интернет-магазины, их там десятки и сотни, глаза разбегаются. Каждый из разных материалов, каждый с разными характеристиками, этих характеристик туча.
2. Как лучше разделить частоты для 3-х полос? Если нужно 4 полосы, то как них разделить и какие тогда нужно в этом случае динамики?
Заранее Вас благодарю. Тема крайне актуальная для аудиофилов с маленькими комнатными габаритами. А то весь интернет пестрит только автозвуком для автомобилей. Комнатные компьютерные колонки совершенно не подходят для хорошего звука.
stereo.ru
3 самые необычные акустические системы | Домашние аудиосистемы | Блог
В большинстве случаев во всем мире музыку воспроизводят электродинамические громкоговорители, или, в обиходе, динамики. Однако конструкции этих устройств уже 122 года и в ней есть свои недостатки.
Динамик состоит из магнита и звуковой катушки, которая колеблется в магнитном поле и передает движение на диффузор. Последний должен быть очень легким и одновременно прочным. Чем легче диффузор — тем быстрее он будет колебаться и отыгрывать быстрые звуки — барабаны будут четче, бас собраннее и т.п. Чем он прочнее, тем меньше будет искажений, поскольку мембрана будет меньше изгибаться при работе.
Но даже самые качественные динамики дают в десятки раз больше искажений, чем современные усилители и звуковые карты. Многолетние эксперименты с различными сплавами и композитными материалами улучшили положение, но не сделали прорыва. «Куда это годится?!» — воскликнули инженеры и создали альтернативные конструкциии для воспроизведения звука.
Электростатические колонки
Самый распространенный тип нестандартных громкоговорителей, фундаментом для создания которых стал принцип электростатического взаимодействия. Между двух решеток-статоров натянута мембрана из сверхлегкого материала с проводящим напылением. Она до 10 раз тоньше человеческого волоса, а ее масса немногим больше массы окружающего ее воздуха. На решетки подается многократно усиленный звуковой сигнал, мембрана колеблется между ними и воспроизводит звук с рекордно низким коэффициентом нелинейных искажений — до 0,05 %! В итоге излучатель отыгрывает очень детальный и прозрачный звук, в котором слышен каждый нюанс.
Сама технология появилась еще в конце позапрошлого столетия. Однако долго не удавалось создать достаточно легкую мембрану для такой акустики. Поэтому первые электростатические колонки для массового рынка — Quad Electrostatic — вышли лишь в 1957 году и произвели маленькую революцию на рынке звукотехники. Они давали настолько честный звук, что стали использоваться даже в студиях. Звукорежиссер Филипп Нюэлл в книге Project-студии пишет:
Мониторы Quad Electrostatic 1957 года всё ещё могут постоять за себя. За последние 40 лет не было создано ничего существенно лучшего.
Однако электростаты не лишены недостатков. Во-первых, они излучают звук в обе стороны. Поэтому вдоль стены их не поставишь — звук от нее будет отражаться и вносить фазовые искажения. Понадобится большое помещение. Но даже в большой комнате будут взаимовычитаться басовые волны, ведь их длина — десятки метров.
Отсюда второй недостаток — мало баса. Дело усугубляется и тем, что излучать басовые волны может лишь очень большая мембрана, производить которую будет уже невыгодно, поэтому амплитудно-частотная характеристика (АЧХ) большинства электростатов имеет спад в районе 60-70 Гц. Для студийных мониторов ближнего поля — в самый раз, а вот для рядового потребителя может быть маловато.
Третий недостаток — узкая направленность излучателя из-за плоской мембраны. То есть, звучат колонки хорошо, но только на участке в 1м2. И, наконец, электростатические колонки требуют мощного и дорогого усилителя для работы.
Производители современных электростатов научились решать некоторые из этих проблем. Излучатели сегодня делают не плоскими, а полукруглыми, чтобы звук распространялся по комнате равномерно. В систему теперь добавляют низкочастотный динамик, который дает глубокий бас.
Однако эти и другие инженерные ухищрения вместе с требуемой при производстве прецизионной точностью и специфическими материалами сделали и без того недешевую конструкцию еще менее доступной для широких масс. АС такого типа стоят десятки тысяч долларов.
Контрапертурные аудиосистемы
Контрапертурные акустические системы по праву можно назвать одними из самых экзотических. Их конструкция состоит из двух одинаковых динамиков, расположенных вертикально строго друг напротив друга. Звуковые волны сталкиваются абсолютно синхронно и излучают результирующую волну во всех направлениях. Иными словами, получается всенаправленная акустика, которая равномерно заполняет собой звуком все пространство в комнате. Нет необходимости искать оптимальную комфортную зону прослушивания, в любом углу музыка будет звучать одинаково качественно.
Помимо всенаправленности, звук будет лишен доплеровской интермодуляции — это искажения, на слух проявляющиеся как гитарный эффект флэнжера. Они возникают из-за того, что динамик, излучая звук, то приближается к слушателю, то удаляется от него. Контрапертурные АС статичны, поэтому лишены интермодуляций. Многие слушатели отмечают невероятный комфорт от прослушивания такой акустической системы. Дело в том, что мозг воспринимает приближающиеся и удаляющиеся от него звуки как опасные и требующие внимания (а вдруг это хищник?). Соответственно, неподвижный источник звука не воспринимается как опасность и не возбуждает нервную систему.
Разумеется, у такой конструкции есть свои недостатки: сложная система требует высокоточного производства, тщательного подбора комплекта динамиков с абсолютно идентичными характеристиками, точного монтажа излучателей и т.п. Все это увеличивает себестоимость таких устройств до астрономических значений. Тем не менее, у них есть свои фанаты и место на рынке Hi-End аудиотехники.
Вибрационные колонки
Самые доступные необычные колонки для рядового потребителя — вибрационные. Для работы такого девайса нужна большая твердая поверхность. Например, стол или окно, хотя сойдет даже коробка молока. Устройство передает поверхности звуковые колебания, превращая ее в диффузор.
Такие девайсы сделаны больше для развлечения, а не для качественного звука. Некоторые умельцы покупают вибрационный динамик отдельно и делают из него сабвуфер. А устройство, прикрепленное к отопительной батарее, превращается в оружие возмездия шумному соседу. Мощность и звук зависят от размеров и материала поверхности, на которой расположен девайс. Лучше всего будут работать тонкие поверхности, частота собственных колебаний которых меньше.
Но технология таки нашла адекватное применение. Возможность превратить любую поверхность в излучатель звука стала востребована на различных выставках, в музеях, ресторанах и магазинах. Можно, например, прикрепить вибродинамик к витрине из оргстекла, сделав невидимые громкоговорители для аудиорекламы. Или, наоборот, превратить их в арт-объект, излучающий звук непонятно каким образом. Также можно сделать излучатели, защищенные от любой непогоды.
Панели из оргстекла, превращенные в невидимые громкоговорители в музее.
Любопытно, что похожим образом работают наушники с костной проводимостью. Они не втыкаются в уши, а прислоняются к кости, передавая звуковые вибрации прямо в череп.