Ключ к знанию

Кпд газотурбинного двигателя


Какой привод выбрать: поршневой или газотурбинный

В состав электростанций относительно небольшой мощности могут входить как газотурбинные двигатели (ГТД), так и поршневые (ПД). В связи с этим у заказчиков часто возникает вопрос, какой привод предпочтительнее. И, хотя ответить на него однозначно невозможно, цель настоящей статьи - попытка разобраться в этом вопросе.

Введение

Выбор типа двигателя, а также их количества для привода электрогенераторов на электростанции любой мощности является сложной технико-экономической задачей. Попытки сравнить между собой в качестве привода поршневые и газотурбинные двигатели чаще всего делаются при условии использования в качестве топлива природного газа. Их принципиальные преимущества и недостатки анализировались в технической литературе [1, 2], в рекламных проспектах производителей электростанций с поршневыми двигателями и даже на страницах Интернета.

Как правило, приводятся обобщенные сведения о разнице в расходах топлива, в стоимости двигателей без всякого учета их мощности и условий работы. Часто отмечается, что состав электростанций мощностью 10–12 МВт предпочтительнее формировать на базе поршневых двигателей, а большей мощности – на базе газотурбинных. Принимать эти рекомендации как аксиому не следует. Очевидно одно: каждый тип двигателя имеет свои преимущества и недостатки, и при выборе привода нужны некоторые, хотя бы ориентировочные, количественные критерии их оценки.

В настоящее время на российском энергетическом рынке предлагается достаточно широкая номенклатура как поршневых, так и газотурбинных двигателей. Среди поршневых превалируют импортные двигатели, а среди газотурбинных – отечественные.

Сведения о технических характеристиках газотурбинных двигателей и электростанциях на их базе, предлагаемых для эксплуатации в России, в последние годы регулярно публикуются в «Каталоге газотурбинного оборудования» [3].

Аналогичные сведения о поршневых двигателях и электростанциях, в состав которых они входят, можно почерпнуть только из рекламных проспектов российских и иностранных фирм, поставляющих это оборудование. Информация о стоимости двигателей и электростанций чаще всего не публикуется, а опубликованные сведения [3] часто не соответствуют действительности.

Непосредственное сравнение поршневых и газотурбинных двигателей

Обработка имеющейся информации позволяет сформировать приведенную ниже таблицу, которая содержит как количественную, так и качественную оценку преимуществ и недостатков поршневых и газотурбинных двигателей. К сожалению, часть характеристик взята из рекламных материалов, проверить полную достоверность которых чрезвычайно трудно или практически невозможно. Необходимые для проверки данные о результатах работы отдельных двигателей и электростанций, за редким исключением [4], не публикуются.

Естественно, что приведенные цифры являются обобщенными, для конкретных двигателей они будут строго индивидуальными. Кроме того, некоторые из них даны в соответствии со стандартами ISO, а фактические условия работы двигателей существенно отличаются от стандартных.

Представленные сведения дают только качественную характеристику двигателей и не могут использоваться при подборе оборудования для конкретной электростанции. К каждой позиции таблицы можно дать некоторые комментарии.

На энергетическом рынке представлен очень большой выбор двигателей, имеющих существенные различия в технических характеристиках. Конкуренция между двигателями рассматриваемых типов возможна только в диапазоне единичной электрической мощности до 16 МВт. При более высоких мощностях газотурбинные двигатели вытесняют поршневые практически полностью.

Необходимо учитывать, что каждый двигатель имеет индивидуальные характеристики, и только их следует использовать при выборе типа привода. Это позволяет формировать состав основного оборудования электростанции заданной мощности в нескольких вариантах, варьируя, в первую очередь, электрическую мощность и количество необходимых двигателей. Многовариантность затрудняет выбор предпочтительного типа двигателя.

О КПД поршневых и газотурбинных двигателей

Важнейшей характеристикой любого двигателя в составе электростанций является КПД по выработке электроэнергии (КПДэ), определяющий основной, но не полный объем потребления газа. Обработка статистических данных по значениям КПДэ позволяет наглядно показать области применения, в которых по этому показателю один тип двигателя имеет преимущества перед другим.

Взаимное расположение и конфигурация трех выделенных на рис. 1 зон, в пределах которых находятся точечные изображения значений электрического КПД различных двигателей, позволяет сделать некоторые выводы:

  • даже в пределах одного типа двигателей одинаковой мощности наблюдается значительный разброс значений КПД по выработке электроэнергии;
  • при единичной мощности более 16 МВт газотурбинные двигатели в комбинированном цикле обеспечивают значение КПДэ выше 48% и монопольно владеют рынком;
  • электрический КПД газотурбинных двигателей мощностью до 16 МВт, работающих как в простом, так и в комбинированном цикле, ниже (иногда очень существенно), чем у поршневых двигателей;
  • газотурбинные двигатели единичной мощностью до 1 МВт, появившиеся на рынке в последнее время, по значению КПДэ превосходят двигатели мощностью 2–8 МВт, наиболее часто применяемые сегодня в составе электростанций;
  • характер изменения КПДэ газотурбинных двигателей имеет три зоны: две с относительно постоянным значением – 27 и 36% соответственно и одну с переменным – от 27 до 36%; в пределах двух зон КПДэ слабо зависит от электрической мощности;
  • значение КПД по выработке электроэнергии поршневых двигателей находится в постоянной зависимости от их электрической мощности.

Однако эти факторы не являются основанием для того, чтобы отдать приоритет поршневым двигателям. Даже если электростанция будет вырабатывать только электрическую энергию, при сравнении вариантов состава оборудования с различным типом двигателей потребуется выполнить экономические расчеты. Необходимо доказать, что стоимость сэкономленного газа окупит разницу в стоимости поршневых и газотурбинных двигателей, а также дополнительного оборудования к ним. Количество сэкономленного газа не может быть определено, если неизвестен режим работы станции по отпуску электроэнергии в зимнее и летнее время. Идеально, если известны необходимые электрические нагрузки – максимальные (зимний рабочий день) и минимальные (летний выходной день).

Использование и электрической и тепловой энергии

Если же электростанция должна производить не только электрическую, но и тепловую энергию, то потребуется определить, за счет каких источников можно покрыть тепловое потребление. Таких источников, как правило, два – утилизированная теплота двигателей и/или котельная.

У поршневых двигателей утилизируется теплота охлаждающего масла, сжатого воздуха и выхлопных газов, у газотурбинных – только теплота выхлопных газов. Основное количество теплоты утилизируется из выхлопных газов с помощью утилизационных теплообменников (УТО).

Количество утилизированной теплоты в значительной степени зависит от режима работы двигателя по выработке электроэнергии и от климатических условий. Неверная оценка режимов работы двигателей в зимнее время приведет к ошибкам в определении количества утилизированной теплоты и неправильному выбору установленной мощности котельной.

Графики на рис.2 показывают возможности отпуска утилизированной теплоты от газотурбинных и поршневых двигателей для целей теплоснабжения. Точки на кривых соответствуют данным заводов-изготовителей о возможностях имеющейся техники для утилизации теплоты. На двигателе одной и той же электрической мощности производители устанавливают различные УТО – исходя из конкретных задач.

Преимущества газотурбинных двигателей в части выработки тепла бесспорны. Особенно это касается двигателей электрической мощностью 2–10 МВт, что объясняется относительно низким значением их электрического КПД. По мере роста КПДэ газотурбинных двигателей количество утилизированной теплоты должно неизбежно снижаться.

При выборе поршневого двигателя для электро- и теплоснабжения конкретного объекта необходимость использования котельной в составе электростанции почти не вызывает сомнений. Работа котельной требует увеличения расхода газа сверх необходимого для выработки электроэнергии. Возникает вопрос, как отличаются расходы газа на энергоснабжение объекта, если в одном случае используются только ГТД с утилизацией теплоты выхлопных газов, а в другом – поршневые двигатели с утилизацией теплоты и котельная. Только после досконального изучения особенностей потребления объектом электроэнергии и тепла можно ответить на этот вопрос.

Если принять, что расчетное потребление тепла объектом может быть полностью покрыто утилизированной теплотой ГТД, а недостаток теплоты при использовании поршневого двигателя компенсируется котельной, то можно выявить характер изменения суммарного расхода газа на энергоснабжение объекта.

Используя данные на рис. 1 и 2, можно для характерных точек зон, отмеченных на рис. 1, получить сведения об экономии или перерасходе газа при использовании приводов различного типа. Они представлены в таблице:

Абсолютные значения экономии газа справедливы только для конкретного объекта, характеристики которого были заложены в расчет, но общий характер зависимости отражен правильно, а именно:
при относительно близких значениях электрического КПД (разница до 10%) использование поршневых двигателей и котельной приводит к перерасходу топлива;

  • при относительно близких значениях электрического КПД (разница до 10%) использовние поршневых двигателей и котельной приводит к перерасходу топлива;
  • при разнице значений КПДэ более 10% для работы поршневых двигателей и котельной потребуется меньше газа, чем для ГТД;
  • существует некая точка с максимальной экономией газа при использовании поршневых двигателей и котельной, где разница между значениями КПДэ двигателей равна 13–14%;
  • чем выше значение КПДэ поршневого двигателя и ниже – газотурбинного, тем больше экономия газа.

В качестве дополнения

Как правило, задача не ограничивается выбором типа привода, требуется определить состав основного оборудования электростанции – тип агрегатов, их количество, вспомогательное оборудование.

Выбор двигателей для производства нужного количества электроэнергии определяет возможности выработки утилизированной теплоты. При этом надо учесть все особенности изменения технических характеристик двигателя, связанные с климатическими условиями, с характером электрической нагрузки, и определить влияние этих изменений на отпуск утилизированной теплоты.

Необходимо также помнить, что в состав электростанции входят не только двигатели. На ее площадке обычно располагается свыше десятка вспомогательных сооружений, работа которых также влияет на технические и экономические показатели электростанции.

Как уже указывалось, состав оборудования электростанции с технической точки зрения можно сформировать в нескольких вариантах, поэтому его окончательный выбор может быть обоснован только с экономических позиций.

При этом знание характеристик конкретных двигателей и их влияние на экономические показатели будущей электростанции чрезвычайно важно. При выполнении экономических расчетов неизбежен учет моторесурса, ремонтопригодности, сроков проведения и стоимости капитальных ремонтов. Эти показатели также индивидуальны для каждого конкретного двигателя независимо от его типа.

Нельзя исключать влияние экологических факторов на выбор типа двигателей для электростанции. Состояние атмосферы в районе предполагаемой эксплуатации электростанции может стать основным фактором при определении типа двигателя (несмотря ни на какие экономические соображения).

Как уже отмечалось, данные о стоимости двигателей и электростанций на их базе не публикуются. Изготовители или поставщики оборудования ссылаются на возможную разницу в комплектации, условия доставки и другие причины. Только после заполнения фирменного опросного листа будут представлены цены. Поэтому сведения в первой таблице о том, что стоимость поршневых двигателей мощностью до 3,5 МВт ниже стоимости газотурбинных такой же мощности, могут оказаться неверными.

Заключение

Таким образом, в классе единичной мощности до 16 МВт нельзя отдавать однозначное предпочтение ни газотурбинным, ни поршневым двигателям. Только тщательный анализ ожидаемых режимов работы конкретной электростанции по выработке электроэнергии и теплоты (с учетом особенностей конкретных двигателей и многочисленных экономических факторов) позволит полностью обосновать выбор типа двигателя. Определить состав оборудования на профессиональном уровне может специализированная фирма.

Использованная литература

  1. Габич А. Применение газотурбинных двигателей малой мощности в энергетике // Газотурбинные технологии. 2003, № 6. С. 30–31.
  2. Буров В. Д. Газотурбинные и газопоршневые энергетические установки малой мощности // Горныйжурнал. 2004, специальный выпуск. С. 87–89,133.
  3. Каталог газотурбинного оборудования // Газотурбинные технологии. 2005. С. 208.
  4. Салихов А. А., Фаткулин Р. М., Абрахманов P. P., Щаулов В. Ю. Развитие мини-ТЭЦ с применением газопоршневых двигателей в Республике Башкортостан // Новости теплоснабжения. 2003, № 11. С. 24-30.

Данная статья с незначительными изменениями взята из журнала "Турбины и дизели", №1(2) за 2006г.
Автор - В.П. Вершинский, ООО "Газпромэнергосервис".

www.aboutdc.ru

Авиационные газотурбинные двигатели / Habr

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели


Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели


Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Спасибо за внимание.

habr.com

Газотурбинный двигатель подробно — Энциклопедия журнала "За рулем"

ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с ). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.


Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).
Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).

Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Большую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:
Дизель 0,26—0,35
Двигатель бензиновый 0,22—0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15—0,25
Газовая турбина со свободно-поршневым генератором газа 0,25—0,35

Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.

Схема реального газотурбинного двигателя

Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.

wiki.zr.ru

чем газотурбинные двигатели "Сатурна" лучше ГТД "Зоря-Машпроект"

Во вторник, 25 апреля, президент РФ Владимир Путин сказал, что КПД и ресурс новых российских морских газотурбинных двигателей превзойдут зарубежные на 10-15%. Такое заявление он сделал на церемонии открытия нового комплекса НПО "Сатурн" по производству морских ГТД. Большинство таких двигателей рыбинского "Сатурна" имеют больший КПД, чем аналоги из Николаева – 36% против 32%. Однако при сравнении с украинской продукцией преимущество, которое озвучил президент, есть пока не у всех отечественных агрегатов. FlotProm сравнил характеристики ГТД.

Запуск на рыбинском НПО "Сатурн" с 2018 года серийного производства морских ГТД сделает ВМФ России независимым от импортных газотурбинных агрегатов. А поскольку разработки "Сатурна" современнее изделий николаевского "Зоря-Машпроекта" (Украина), у них несколько выше и КПД. По словам Владимира Путина, коэффициент полезного действия отечественных двигателей вырастет на 10-15%, ведь это "более современная техника по сравнению с той, что мы брали раньше". FlotProm проанализировал КПД силовых установок.


Линейка морских ГТД производства НПО "Сатурн"

В рамках импортозамещения НПО "Сатурн" с 2014 года ведет три опытно-конструкторские работы по двигателям М90ФР, "Агрегат-ДКВП" и М70ФРУ-Р, рассказали FlotProm в Объединенной двигателестроительной корпорации (ОДК). Новыми двигателями российского производства оснастят фрегаты проектов 22350 и 11356, малый десантный корабль на воздушной подушке "Зубр", а также другие корабли и суда ВМФ России.

25 апреля в Рыбинске продемонстрировали два корабельных газотурбинных двигателя – М70ФРУ и М70ФРУ-2. FlotProm приводит таблицу с характеристиками этих ГТД в сравнении с украинскими аналогами и двигателем М90ФР.

КПД российского газотурбинного двигателя для ДКВП "Зубр" выше украинского всего на 0,4%

Двигатель М70ФРУ-2 производства НПО "Сатурн" станет основой для силовой установки малого десантного корабля на воздушной подушке "Зубр" (проект 12322). Главной энергетической силовой установкой "Зубра" первоначально была ГТУ типа М35. Она включает в себя три тяговых газотурбинных агрегата (ГТА) М35-1 и два нагнетательных ГТА М35-2. В состав каждого из агрегатов входят ГТД еще советской разработки ДП71 (в украинской классификации – UGT6000) разработки и производства "Зоря-Машпроект". Двигатели ДП71 производятся в Николаеве с 1978 года.

Для замены украинских ГТД "Сатурн" в 2014 году начал работы по ОКР "Агрегат ДКВП". Цель опытно-конструкторской работы – создание газотурбинного двигателя М70ФРУ-2 и корабельных ГТА М35Р-1, М35Р-2 и М70Р мощностью 10 000 л.с. В характеристиках двигателя М70ФРУ-2, представленных 25 апреля НПО "Сатурн", указан КПД в 32,4%. Это всего на 0,4% лучше украинского ГТД.


ГТД М70ФРУ2 для ДКВП типа "Зубр"

Возможно, характеристики рыбинских ГТД (особенно М70ФРУ-2) в будущем улучшатся, так как завершение всех трех ОКР запланировано на декабрь 2017 года, и не все испытания еще окончены. В ОДК 25 апреля заявили, что "дальнейшее развитие морских ГТД может пойти по пути увеличения мощности, а также повышения КПД двигателей". Кроме того, "Сатурн" осваивает сплавы из кобальта.

По данным источника FlotProm в николаевском "Зоря-Машпроект", применение новых кобальтовых сплавов, используя аддитивные технологии, может "несколько улучшить характеристики газотурбинного двигателя, в том числе способствовать повышению его КПД". На украинском предприятии назвали использование кобальтовых сплавов и аддитивных технологий своим "ноу-хау", работа над которым ведется уже несколько лет.

Российские ГТД для фрегатов проекта 11356 и СКР проекта 11540 обогнали украинские по КПД

Рыбинские двигатели М70ФРУ и М90ФР созданы для замены ГТД украинского производства ДС71 и Д090 соответственно. Об этом FlotProm сообщил источник, знакомый с ситуацией. В главной энергоустановке М27, использующейся на СКР "Ярослав Мудрый" проекта 11540 "Ястреб", "девяностые" двигатели являются форсажными, а "семидесятые" – маршевыми. При этом российские двигатели имеют КПД в 36% против 32% у ГТД украинского производства.

ГЭУ фрегатов проекта 11356 – установка М7Н1, в которой маршевыми являются все те же двигатели ДС71 (в украинской классификации – UGT6000), а форсажными – ДТ59 (UGT16000). КПД последнего – всего 30%.


ГТД М70ФРУ

Производители и конструкторы газотурбинных двигателей: КПД таких установок ограничен 38-40%

По мнению главного конструктора "Коломенского завода" Валерия Рыжова, которое он высказал в интервью FlotProm в 2015 году, КПД газотурбинного двигателя "находится в пределах 36%, не более. Для повышения этого показателя надо увеличить температуру сгорания в камере. Это в свою очередь приводит к тому, что наступает предел длительной прочности материала рабочих лопаток при высокой температуре. В дизельном двигателе максимальная температура сгорания достигает 1700 градусов, в газотурбинном двигателе такую температуру создать нельзя – сгорят рабочие лопатки турбины".

По информации Объединенной двигателестроительной корпорации, КПД большинства их новых двигателей составляет 36%. Источник FlotProm на предприятии "Зоря-Машпроект" заявил, что КПД газотурбинных двигателей можно довести максимум до 38-40%.

Последние украинские разработки – например, двигатель UGT 25000, имеет заявленный производителем КПД от 36 до 37% (в разных модификациях). При этом британская компания Rolls-Royce в 2016 году заявила, что КПД ее двигателя MT-30 составляет свыше 40%.

Эффективность ГТД зависит от качества материалов и запчастей

Как рассказали FlotProm в группе компаний "Дизельзипсервис", которая занимается в том числе ремонтом газотурбинных двигателей, КПД, заявленный "Роллс-Ройсом", выглядит сомнительно, это скорее маркетинговый ход. Представитель компании добавил, что КПД газотурбинных силовых установок сильно зависит от особенностей эксплуатации двигателя, а также от качества материалов и запчастей. "Так, после модернизации системы топливоподачи у двигателя ДЖ59 и установки на него новых лопаток из современных сплавов, коэффициент полезного действия ГТД увеличился, а расход топлива – уменьшился", – сказал представитель ГК "Дизельзипсервис".

Он также отметил, что новшества вроде кобальтовых сплавов и аддитивных технологий могут еще улучшить этот показатель. "Например, двигатель ДВ71Л (UGT6000+) до капремонта был "усталым", его КПД уменьшился вполовину с 30%. Ремонт на "Кингисеппском машиностроительном заводе" с применением новых материалов позволил восстановить это значение почти до показателей нового двигателя. Но заводское качество изготовления ГТД принципиально важно", – резюмировали в "Дизельзипсервисе".

topwar.ru

На пути к Т-80: танковые газотурбинные двигатели

В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.

Первые проекты

Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.

Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.

В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.

В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.

Челябинские двигатели

Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.

Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л.с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.

ГТД-3 для «Объекта 432»

Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.

В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.

В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».

Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.

Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.

Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л.с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.

Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.

ГТД из Ленинграда

Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.

На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».

В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.

Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.

Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.

Двигатель для Т-64А

Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.

Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.

Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.

По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.


Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.

Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.


За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.

На финишной прямой

Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».

Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.

Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.

В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.


По материалам сайтов:
журнал "«Техника и вооружение: вчера, сегодня, завтра…»"
http://armor.kiev.ua/
http://army-guide.com/
http://t80leningrad.narod.ru/

topwar.ru

Газотурбинные двигатели — DRIVE2

Газотурбинными двигателями оснащаются реактивные самолеты, вертолеты, наконец, танки (вспомните наш Т-80). Но чтобы такой мотор ставился на грузовики и автобусы? А между тем еще недавно газовую турбину рассматривали как альтернативу дизелю! И вот что из этого получилось.
Мне повезло: я был свидетелем расцвета и заката cамых последних в мире газотурбинных грузовика и автобуса! Их дебют состоялся в уже далеком 1995 году на Парижском салоне грузовиков. Помнится, тогда французы очень боялись террористов, дотошно досматривая сумки при входе в каждый павильон.
У концепт-трака Chevrolet Turbo Titan III вместо руля стояли два мини-штурвала.
Так вот: там под переливающимися полосами света красовались экспериментальные Volvo — грузовик ECT (Environmental Concept Truck, «экологически чистый концепт-трак») и ECB (то же, только Bus, «автобус»). Их появление было равносильно тому, если бы посреди Парижа приземлились две летающие тарелки!
У обоих — обтекаемые обводы (грузовику специально придали сходство с дельфином), невиданные тогда фонари со светодиодами, видеокамеры вместо зеркал заднего вида, активная подвеска (причем передняя — независимая), дисковые тормоза с АБС (не забывайте: это была середина девяностых), дисплей вместо щитка приборов. И главное — гибридный привод, где колеса крутил электромотор, а ток для него вырабатывала газовая турбина, соединенная с генератором.
В музее Volvo хранятся «концепты» Парижского салона 1995 года — грузовик и автобус с гибридным газотурбинно-электрическим приводом.
Цитирую Энциклопедический словарь юного техника: «Газотурбинные двигатели, ГТД, в частности работают на современных самолетах (реактивные двигатели). Воздух в ГТД сжимается компрессором и подается в камеру сгорания, в которую вводится жидкое топливо или горючий газ. Нагретый сжатый газ вращает турбину. Часть своей работы турбина отдает компрессору, сжимающему воздух, а часть — потребителю: электрогенератору, винту или реактивной струе на самолете, колесу автомобиля и т.д. Благодаря хорошей экономичности, компактности, надежности и большой мощности турбины практически вытеснили паровые машины из мировой энергетики».
оложим, насчет экономичности составители словаря явно погорячились, зато насчет всего остального, особенно компактности — чистая правда! Неудивительно, что у Volvo ECT двигатель удалось разместить под рамой, рядом с батареей аккумуляторов, — а питаться он должен был натуральным газом или даже этанолом.
Тогдашняя статья в Авторевю об этих машинах заканчивалась так: «Жаль, что красавцы, на создание которых затрачено 15 миллионов немецких марок и 18 месяцев кропотливого труда, закончат свой век где-нибудь на задворках экспериментального цеха. В лучшем случае они попадут в заводской музей».

Я как в воду глядел. Обе машины действительно попали в музей Volvo, где я их недавно видел в очередной раз. В одном из залов навечно припаркован автобус, за стеной, припав на «брюхо» (под днище еле пролезают два пальца!), притулился грузовик со «спущенной» подвеской. Грустная картина. Но — закономерная, и сейчас станет понятно, почему.
Двигатель был разработан аэрокосмическим подразделением Volvo Aero
Начало истории
Теперь давайте перенесемся в 1950 год, в Москву, где по широким улицам раскатывают Победы, ЗИМы, грузовые «газоны». А на прилавках книжных магазинов лежит книга известного конструктора и дизайнера Юрия Аароновича Долматовского «Повесть об автомобиле». Откроем?

Изображение
Турбина занимала так мало места, что казалось, будто у тягача Kenworth нет двигателя! (1950 г.)

«Все более определенно вырисовывается облик будущего автомобиля. Все в нем стройно, закономерно. Двигатели отличаются от прежних, как небо от земли. Это турбинки величиной с телефонный аппарат, они питаются дешевыми сортами топлива…»

Утопия? Для советских конструкторов тех лет — да. Но «американская военщина» к тому времени уже полным ходом вела адаптацию аналога реактивного двигателя Boeing к наземной технике!

Испытания решили проводить в гражданских условиях, и в том же 1950 году Boeing совместно с фирмой Kenworth успешно инсталлировали под капот магистрального тягача 175-сильную газовую турбинку. Весила она всего 200 фунтов (91 кг) — в тринадцать раз меньше, нежели дизель аналогичной мощности. А места занимала столько, что казалось, будто под капотом двигателя нет вовсе!
В архиве журнала Life сохранились снимки той машины: особенно впечатляют кадры со снятым носовым оперением, сделанные на шоссе. Наверняка встречные водители сворачивали шеи в изумлении: «Что за диво? Грузовик едет без мотора!» А уж что творилось в местах остановки машины — словами не описать: фотограф запечатлел толпы водителей, разглядывающих диковинку.
Изображение
«Что это под капотом? Турбина? Невероятно!»

Забавно, что в истории компании Kenworth говорится, что испытания якобы проходили «с наглухо закрытым моторным отсеком» и «в обстановке полной секретности»!

Газотурбинный Kenworth пересек США с севера на юг, затем некоторое время работал на коммерческих перевозках, курсируя по западному побережью, между Сиэтлом и Лос-Анджелесом. Но испытания, увы, провалились. Прежде всего, рейс длился на пять-шесть часов дольше, нежели с обычным дизельным тягачом: газотурбинный очень медленно разгонялся, сильно дымил, а выжим педали сцепления был настоящим мучением (при том, что у старых «американцев» сцепление и без того тугое). Но главное, турбина пожирала топливо так, словно это был не тягач, а стратегический бомбардировщик: расход равнялся миле на галлон, или же 235 л/100 км!

Неудивительно, что проект был свернут, тем более что Kenworth и армия к тому времени переключились на разработку «атомного тягача» для транспортировки баллистических ракет. О газовой турбине, казалось, забыли, но ненадолго.

Турбинная лихорадка
В шестидесятых годах «турбинная лихорадка» вспыхнула в Штатах с новой силой. Компании начали строить настоящие «грузовики будущего», оборудованные такими двигателями, и наиболее известным среди них стал Ford Big Red («большой красный») 1964 года. Экспериментальный 30-метровый автопоезд состоял из тягача и двух трейлеров, а его экипаж чувствовал себя словно в самолете. В кабину вели выдвижная лесенка с электроприводом и дверь с пневмоприводом, водитель восседал за пультом, в оснащение входили кондиционер, холодильник, микроволновка и телевизор. Невиданное явление по тем временам! 600-сильная турбина лихо разгоняла 77-тонный состав, и звук двигателя был точь-в-точь самолетным. Одной заправки (тысяча литров солярки) хватало примерно на столько же километров, то есть расход равнялся 100 л/100 км. Немало, но, учитывая впечатляющую массу, вполне закономерно.
Изображение
Турбина Boeing была в тринадцать раз легче тогдашнего дизеля

Изображение
«Грузовики будущего» 1964 года: Chevrolet Bison (две его турбины расположены над кабиной)…

Изображение
…и Ford Big Red. Хорошо видны пульт управления и выдвижная лесенка

В том же году на Всемирной ярмарке в Нью-Йорке концерн General Motors показал совсем уж фантастический грузовик — четырехосный Chevrolet Bison с приплюснутой кабиной. Ни дать ни взять космический аппарат! Да еще с двумя турбинами общей мощностью в 1000 л.с. (они располагались прямо над кабиной): одна, 300-сильная, работала постоянно, а при разгоне и на подъемах к ней подключалась вторая, 700-сильная. А знаете, как здесь был устроен грузовой отсек? Задняя двухосная тележка пристыковывалась к ведущей «голове» (то есть грузовик был переднеприводным!), а в пространстве между осями располагались обтекаемые контейнеры.

Но разработчики и сами понимали, что сотворили нечто невероятное, а потому в следующем году построили более традиционный с виду автопоезд — Turbo Titan III. Здесь турбина развивала всего 280 л.с., зато уже была проверенной (ее разработка длилась 15 лет, и за три года до Титана она испытывалась на обычном тягаче.)

Впрочем, Turbo Titan III тоже поражал своими решениями: достаточно сказать, что коробка передач была автоматической, фары выдвигались из жабр-воздухозаборников по бокам стеклопластиковой кабины, а руль заменяли… два мини-штурвала на «космической» консоли. Как с их помощью управляли тягачом — ума не приложу!

Кроме того, Turbo Titan III стал первым в мире грузовиком, на котором стояло стереофоническое радио FM с четырьмя динамиками. А еще тут был — вы не поверите! — мобильный телефон. В 1965 году!

Но одними грузовиками дело не закончилось: в редакции хранится статья из журнала Popular Science за 1969 год о газотурбинном автобусе RTX, Rapid Transit Experimental. Вот что в ней написано.

«Хотели бы вы завернуть за угол дома и поехать на работу с первоклассным комфортом, как в реактивном лайнере Boeing? Едете в тишине, которую нарушает только свист турбины, идете по мягкому ковру, слушаете стереофоническую музыку, вдыхаете кондиционированный воздух. И это — реальность!» Далее автор статьи пишет: «У автобуса только две педали, одна для тормозов с масляным охлаждением (еще одна новинка), другая для 280-сильной турбины. Разгон плавный, без рывков, двигатель работает тише обычного, на ходу автобус не шатает, а кварцево-йодные лампы освещают дорогу почти на километр вперед. Вы спросите: когда RTX появится на автобусной остановке? Это может произойти уже через пять лет».

Справедливости ради упомянем бескапотные тягачи, не отличимые с виду от серийных, под стандартными кабинами которых скрывалась турбина. Тот же General Motors создал тягач GMC Astro 95 Gas Turbo Special, а Freightliner построил аж десять опытных образцов.

В таком виде «газотурбинный вирус» проник и в Европу. Больше всех «баловались турбинами» англичане: только Leyland построил три образца (очень динамичных, но столь же прожорливых), свою машину создал европейский Ford. Существовал даже «турбоMAN» с двумя здоровенными выхлопными трубами за кабиной. Их наличие неудивительно: температура и количество выхлопных газов турбины намного больше, нежели у поршневого двигателя.
Изображение
Экспериментальный MAN отличался здоровенной выхлопной системой за кабиной

При этом все фирмы мечтали, что однажды им удастся разрешить существующие проблемы — и вот тогда-то турбина, легкая, компактная и долговечная, придет на смену дизелю.

За «железным занавесом»
Помните давнюю книгу Долматовского? Сказка стала былью в 1959 году, когда на базе автобуса ЗИС-127 был построен опытный ТурбоНАМИ-053. Его турбина была почти в два раза мощнее, нежели дизель (350 л.с. против 180 л.с.), и разгоняла автобус до фантастических 160 км/ч. Представляете — по тогдашним-то дорогам? Но автобус вскоре прозвали «пожирателем топлива». Нетрудно догадаться, почему!

Тем не менее работы продолжались, и в 1970 году Госкомитет по науке и технике утвердил план внедрения таких моторов: к нему были подключены ГАЗ, МАЗ, МоАЗ, БелАЗ и КрАЗ. В Горьком было создано семейство газотурбинных двигателей ГАЗ-99 мощностью до 250 л.с. — и начались эксперименты.
Изображение
Таким в 1950 году советские конструкторы представляли автомобиль с турбиной

Изображение
Первый автомобиль с ГТД в нашей стране — ТурбоНАМИ-053 (1959 г.) Рисунок Александра Захарова

Еще за год до принятия «газотурбинного плана» БелАЗ создал 120-тонный самосвальный автопоезд с могучей турбиной из Ярославля (она развивала 1200 л.с.), а в 1973 году был построен первый газотурбинный МАЗ. Коллега Алексей Воскресенский, работавший в НАМИ, видел одну из тех минских машин — седельный тягач — в начале девяностых: «Она стояла под деревом, двигатель завели пару раз — ветки и засохли. Жар от вертикальной выхлопной трубы был ого-го каким!»
Изображение
Первый в СССР газотурбинный грузовик — БелАЗ-549В грузоподъемностью 120 т (1969 г.)

На КрАЗе вначале хотели поставить турбину на древний самосвал КрАЗ-256 с «деревянной» кабиной, но мощность двигателя была слишком мала, к тому же он просто не влез бы под капот. Советская турбина — это вам не американская! К тому же ей требовался громоздкий понижающий редуктор: вал вращался со скоростью аж 35 тысяч об/мин, чего не выдержала бы ни одна трансмиссия.

Но к тому времени завершились испытания КрАЗа-260 с «железной» кабиной, ГАЗ довел мощность агрегата до 350 л.с., финансирование проекта взяло на себя Министерство обороны (что неудивительно). Поскольку подходящих сцепления и коробки передач в СССР не было, их купили в Венгрии — и в итоге на свет появился монстр, названный КрАЗ-Э260Е. Его капот был длиной едва ли не с половину кузова!
Изображение

Вначале конструкторы обрадовались: двигатель

www.drive2.ru

Газотурбинный двигатель

Автор: Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль» [1]
16706 0

В авиации газотурбинный двигатель полностью заменил поршневой даже в сравнительно небольших установках. Все больше применяется газовая турбина в судостроении и на тепловых электростанциях. От турбины в этих установках требуется отдача максимальной мощности при постоянной частоте вращения, частичные нагрузки при максимальной частоте вращения не используются и нет необходимости в быстром изменении мощности и частоты вращения. Повышается интерес к применению газовой турбины и для привода автомобиля. Ряд особенностей газотурбинного двигателя служат причиной того, что он до сих пор не применяется в автомобилях.

Характер кривой крутящего момента одновального газотурбинного двигателя невыгоден для применения в автомобиле. Момент быстро падает с уменьшением частоты вращения и имеет нулевое значение при снижении максимальной частоты вращения приблизительно на 40 %. Для привода автомобиля пригодна только двухвальная газовая турбина, изображенная на рис. 1. Турбина привода компрессора 3 приводит в движение компрессор 1, тяговая турбина 4 размещена на валу отбора мощности. В теплообменнике 5 отработавшие газы подогревают воздух на входе его в камеру сгорания 2, что улучшает термический КПД установки.

Рис. 1. Двухвальный газотурбинный двигатель:
а — схема двигателя; б — зависимость относительной величины крутящего момента от относительной частоты вращения.

Турбинное колесо 4 имеет наибольший момент, когда его частота вращения равна нулю, при этом компрессор с турбинным колесом 3 может вращаться с максимальной частотой вращения. При возрастании частоты вращения тяговой турбины ее крутящий момент изменяется в соответствии с графиком, приведенным на рис. 1, б. Такая характеристика крутящего момента очень выгодна для использования в автомобиле и может исключать использование преобразователя момента.

Другое отрицательное свойство газотурбинного двигателя состоит в том, что его удельный расход топлива при частичной нагрузке быстро возрастает. У автомобиля, особенно легкового, двигатель в основном работает при частичных нагрузках и полностью загружен лишь в течение очень короткого периода времени. Этим объясняется тот факт, что газотурбинный двигатель начали применять прежде всего на грузовых автомобилях для дальних магистральных перевозок, когда автомобильный двигатель постоянно работает в условиях, близких к полной нагрузке.

Возникают также проблемы размеров газотурбинного двигателя. КПД газовой турбины зависит не от частоты вращения колеса, а от его окружной скорости. Для сохранения оптимальной окружной скорости при необходимости уменьшения максимальной мощности следует уменьшить диаметр колеса, а его частоты вращения увеличить. Однако у турбин с небольшим диаметром колеса зазор между наружным диаметром лопаток и корпусом в связи с наличием допусков на изготовление не уменьшается пропорционально снижению диаметра турбинного колеса, а имеет большее относительное увеличение. Это означает большие потери при перетекании газа через этот зазор и ухудшение КПД турбины. Поэтому газовую турбину невыгодно применять в установках мощностью ниже 100 кВт. Эти недостатки газотурбинного двигателя тормозят его применение в легковых автомобилях.

Следует, однако, рассмотреть и основные преимущества газотурбинного двигателя, к ним относятся:

  • возможность применения почти всех видов топлива;
  • небольшое содержание вредных веществ в отработавших газах вследствие большого коэффициента избытка воздуха при сгорании в турбине;
  • более простое обслуживание, так как отпадает необходимость замены масла, которое не взаимодействует с горячими газами; минимальные потери трения в подшипниках, малый износ и большая долговечность;
  • отсутствие вибраций, так как вращающиеся детали можно легко сбалансировать;
  • малая шумность и возможности ее дальнейшего снижения;
  • благоприятная характеристика кривой крутящего момента;
  • легкость холодного пуска двигателя без необходимости обогащения смеси;
  • высокая удельная мощность на единицу массы;
  • отсутствие системы охлаждения.

Эти преимущества являются настолько важными, что в настоящее время ведутся интенсивные разработки газотурбинного двигателя для легковых автомобилей. Основное внимание уделено повышению максимальной температуры газов на входе в турбину. Уже получены хорошие результаты, и имевшаяся первоначально температура газов 900 °C увеличилась до требуемых 1300 °C. На рис. 2 показано влияние температуры на входе в турбину на ее мощность, термический КПД и удельный расход топлива.

Рис. 2. Влияние температуры на входе Tвх в турбину на КПД газотурбинного двигателя η и его удельный расход топлива ge.

Работу в условиях постоянной температуры выше 1300 °C не выдерживает ни один металл, поэтому необходимо применять керамические материалы. Для изготовления лопаток турбины целесообразно использовать нитриды кремния, которые и при указанной температуре имеют достаточную прочность. Недостатки керамических материалов состоят в том, что они не выдерживают резкого изменения температур при холодном пуске и изменении нагрузки. Разработки керамических материалов успешно продолжаются и можно ожидать, что после 1985 г. появятся материалы, которые позволят газотурбинному двигателю иметь такой же удельный расход топлива, как у дизеля.

Для снижения удельного расхода топлива в газовой турбине используют вращающийся теплообменник. Он представляет собой диск из пористого керамического материала, приводимый от двигателя и вращающийся с очень низкой частотой вращения. Отработавшие газы из турбины проходят через этот диск и нагревают его. Поворачиваясь, нагретая часть диска подходит к отверстиям трубопровода, ведущего от компрессора в камеру сгорания, и воздух, проходя через диск в противоположном направлении, нагревается. Теплота, которая была бы отведена из двигателя с отработавшими газами, используется для подогрева воздуха, подаваемого в камеру сгорания. Трудности состоят в герметизации диска теплообменника, необходимой для предотвращения потерь теплоты при перемещении диска от одного трубопровода к другому. Негерметичность современных теплообменников составляет сейчас лишь 2 % от величины, наблюдавшейся у их первых прототипов.

Хорошие динамические характеристики двухвальной газовой турбины обеспечиваются регулируемым направляющим аппаратом, т. е. поворотными направляющими лопатками перед вторым турбинным колесом. Привод лопаток – гидравлический, управляемый электронным устройством, которое осуществляет также контроль безопасности работы турбины при возникновении неисправностей в ней или в некоторых из ее деталей.

При резком отпускании педали управления двигателем поворотные лопатки перед турбиной устанавливаются в положение торможения и на турбине возникает отрицательный момент, в результате действия которого частота вращения тяговой турбины быстро снижается.

В качестве примера на рис. 3 представлен схематичный разрез турбины, разработанной фирмой «Мерседес-Бенц» для большого легкового автомобиля. Турбина выполнена по двухвальной схеме с вращающимся теплообменником. Достигнутая мощность 94 кВт, наибольший крутящий момент 332 Н∙м при заторможенном вале тяговой турбины. Степень сжатия одноступенчатого радиального компрессора равна при этом 4, температура на входе в турбинное колесо достигает 1252 °C.

Рис. 3. Схема газотурбинного двигателя «Мерседес-Бенц» дли легковых автомобилей:
1 — воздушный фильтр; 2 — компрессор; 3 — камера сгорания; 4 — турбина привода компрессора; 5 — тяговая турбина с регулируемым направляющим аппаратом; 6 — вращающийся керамический теплообменник; 7 — привод вспомогательных агрегатов.

Расчетная мощность этого двигателя составляет 110 кВт при частоте вращения вала первой турбины 60000 – 65000 мин-1, максимальный крутящий момент 550 Н∙м. Двигатель рассчитан на работу при температуре поступающих из камеры сгорания газов на вход в турбину около 1350 °C. Диаметр колеса компрессора составляет 180 – 185 мм, колеса первой турбины 165 мм, второй – 170 – 175 мм. На основе характеристики этого двигателя были проведены расчеты расхода топлива автомобилем массой 1600 кг, оснащенного таким двигателем. При скорости 90 км/ч, расчетный расход топлива равен 5,1 л/100 км, при скорости 120 км/ч — 6,7 л/100 км, в городском цикле согласно стандарту ДИН 70030 расход топлива составил 14,2 л/100 км. Турбина совместно с воздушным фильтром и приводом вспомогательных агрегатов имеет массу 240 кг, длину 770 мм, ширину 650 мм, высоту 550 мм. При проведении расчетов площадь фронтальной проекции автомобиля считалась равной 2 м2, а значение коэффициента сопротивления воздуха cx – 0,3.

Другая турбина, разработанная фирмой «Фольксваген», имеет сходную концепцию и развивает мощность 110 кВт. Степень сжатия компрессора 4,5, расход воздуха 0,84 кг/с. Температура газа на входе в турбину равна 1110 °C, минимальный удельный расход топлива составляет 290 г/(кВт∙ч), расход топлива при 30 %-ной нагрузке равен 330 г/(кВт∙ч). Масса турбины 210 кг. Расход топлива автомобилем модели «Ro 80» массой 1700 кг в городском цикле составил 15,3 л/100 км, на шоссе — 9,4 л/100 км, а в среднем — 12,6 л/100 км. Окружная скорость колеса компрессора с загнутыми назад лопатками составляет 513 м/с, максимальная частота вращения компрессора равна 63700 мин-1, тяговой турбины — 52200 мин-1. На входе в компрессор имеется регулируемый направляющий аппарат в виде поворотных лопаток, которые позволяют снизить расход топлива при частичных нагрузках и на холостом ходу.

Состояние развития в области газовых турбин в 1981 г. показывало, что достигнут заметный рост долговечности турбин мощностью выше 100 кВт, хотя по этому параметру турбины все еще отстают от двигателей внутреннего сгорания. Большое преимущество турбины состоит в том, что она может работать на заменителях нефтяного топлива. Дальнейшее развитие газотурбинных двигателей зависит от применения новых керамических материалов для рабочего колеса и направляющего аппарата турбины, ее теплообменника и камеры сгорания. При использовании в автомобиле двухвального газотурбинного двигателя необходимо после тяговой турбины применить редуктор и многоступенчатую автоматическую коробку передач. При этом использование трансформатора крутящего момента после турбины не требуется.

Опубликовано 17.03.2014

Читайте также

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. - М.: Машиностроение, 1987. - 320 с.: ил.//Стр. 22 - 23 (книга есть в библиотеке сайта). – Прим. icarbio.ru

Комментарии

icarbio.ru

Газовая турбина — Википедия

Промышленная газовая турбина в разобранном виде

Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу[1]. Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, именуемый сопловым аппаратом (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густав Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины[2].

Первую в мире газовую реверсивную турбину сконструировал русский инженер и изобретатель Павел Дмитриевич Кузьминский в 1887 году. Его 10-ступенчатая турбина работала на парогазовой смеси, получаемой в созданной им же в 1894 году камере сгорания — «газопаророде».[3] Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем посту­пала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки.[4] В 1892 году П. Д. Кузьминский испытал турбину и предложил её военному министерству в качестве двигателя для дирижабля его собственной конструкции.[5] В 1897 году на Петербургском патронном заводе была построена действующая газовая турбина,[6] которую изобретатель готовил к показу на Всемирной выставке в Париже в 1900 году, однако не дожил до неё несколько месяцев.

Одновременно с Кузьминским опыты с газовой турбиной (в качестве перспективного двигателя для торпед) проводил также Чарлз Парсонс, однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин[7].

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементами разработки. Традиционно — это были гидродинамические или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества[править | править код]

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Чаще всего газовые турбины в электростанциях применяются в комбинированном парогазовом цикле, подразумевающем выработку пара остаточным теплом выхлопных газов в котле-утилизаторе с последующей подачей пара на паровую турбину для дополнительной выработки электроэнергии. Такие установки могут иметь высокий КПД — до 60 %. Кроме того, газовая турбина может работать в когенераторных конфигурациях: выхлоп используется для подогрева воды систем теплоснабжения для нужд ГВС и отопления, а также с использованием абсорбционных холодильных машин для систем хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. КПД таких установок — газотурбинных ТЭЦ может очень высоким и доходить до 90 %, но эффективность их применения напрямую зависит от потребности в тепловой энергии, которая непостоянна в течение года и зависит от погодных условий.

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей ёмкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток.

Микротурбины[править | править код]

Отчасти успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей[править | править код]

Преимущества
  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем.
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной — более высокий КПД по сравнению с поршневым двигателем. Отсюда — использование их в электростанциях.
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ, по сравнению с поршневыми двигателями
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.
  • Высокая манёвренность и диапазон регулирования.
Недостатки
  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Токарная обработка и производство деталей более сложные;
  • При любом режиме работы имеют меньший КПД, чем поршневые двигатели (КПД на номинальной нагрузке — до 39 %, при этом официальные данные по поршневым двигателям — 41-42 %). Требуют дополнительной паровой турбины для повышения КПД.
  • Низкий механический и электрический КПД (потребление газа более чем в 1,5 раза больше на 1 Квт-ч электроэнергии, по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Высокие эксплуатационные нагрузки, следствием которых является использование дорогих жаропрочных сплавов.
  • Более медленный пуск, чем у поршневых двигателей внутреннего сгорания.
  • Существенное влияние пусков-остановок на ресурс.

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере.

  • ГТ-МГР (Модульный гелиевый реактор)

ru.wikipedia.org

Газотурбинная электростанция — Википедия

Материал из Википедии — свободной энциклопедии

Газотурбинная электростанция — современная высокотехнологичная установка, генерирующая электричество и тепловую энергию.

Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей — силовых агрегатов, механически связанных с электрогенератором и объединенных системой управления в единый энергетический комплекс. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Она способна также отдавать потребителю значительное количество (вдвое больше электрической мощности) тепловой энергии, если установить на выхлопе турбины котёл-утилизатор; в этом случае установка называется ГТУ-ТЭЦ.

Схематическое изображение простого единичного силового агрегата газотурбинной электростанции

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо — газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Устройство моноблочного газотурбинного генератора

С вхождением в широкую практику мощных полупроводниковых преобразователей напряжения (инверторов) и бесколлекторных генераторов большой мощности на постоянных магнитах стало оправданным создание газотурбинных электростанций на мощность от десятков киловатт, обозначаемых термином «микротурбины». В такой установке отсутствует редуктор, а частота вращения турбины может изменяться по необходимости (изменение нагрузки и др.) Генератор вырабатывает ток сравнительно высокой частоты (килогерцы), который выпрямляется и преобразуется в трёхфазный ток промышленной частоты инвертором. Единственная движущаяся деталь, объединяющая колёса турбины и компрессора и ротор генератора, может быть подвешена в газодинамических подшипниках, исключающих износ. Основным фактором долговечности такой установки становится эрозия рабочего колеса и износ при пуске. Микротурбинные генераторы контейнерного формата имеют межсервисный интервал порядка года непрерывной работы и срок службы до капремонта порядка 60000 часов (около 7 лет)[1]. Будучи прямыми конкурентами поршневых агрегатов, микротурбины, тем не менее, проигрывают им по стоимости и электрическому КПД (то есть соотношению выработанной электрической и тепловой энергии). При этом число пусков ограничено примерно 300 в год, что затрудняет использование их как резервных источников.

Сферы использования газотурбинных электростанций[править | править код]

Использование малых газотурбинных электростанций целесообразно для удалённых или экономически обособленных потребителей, для которых характерны длительные периоды непрерывной работы (в противовес поршневым агрегатам) либо простоя (делающего невыгодным создание мощных подключений к централизованным электросетям), особенно — при необходимости отопления объекта или другом использовании параллельно получаемого тепла.

Крупные ГТЭС оправданы в сравнении с тепловыми (паротурбинными) станциями при доступности дешёвого топлива и чрезмерной дороговизне капитального строительства (нефтегазоносные районы Севера).

Сферы использования газотурбинных электростанций весьма обширны:

и другие отрасли экономики.

Имеется возможность получения от газотурбинных электростанций больших количеств попутной тепловой энергии, а её использование предполагает возврат инвестиций в обозримые и предсказуемые сроки. На практике использование бросового тепла турбинной установки является решающим фактором, оправдывающим её использование в сравнении с поршневой электростанцией или централизованным энергоснабжением, за исключением специфических условий нефтегазового комплекса (доступное топливо и высокие требования к моторесурсу).

Низкие вибрации, шум и токсичность выхлопа малых электростанций в сочетании с доступностью газовых сетей оправдывают применение их в качестве автономных источников постоянного энергоснабжения в городах, если стоимость сетевой электроэнергии высока, а организация подключения к электросети затруднена.

ru.wikipedia.org

Газотурбинный двигатель. Устройство и принцип работы.

Газотурбинный двигатель – это разновидность теплового двигателя, который работает по не очень простому принципу. Газ в двигателе сжимается и нагревается, после чего, энергия этого газа преобразуется в механическую работу. Как Вы могли заметить, с первых слов описания данного двигателя, все процессы происходят в потоке движущегося газа, что кардинально отличается от принципа работы поршневого двигателя.

Как работает газотурбинный двигатель? Если рассматривать, более подробно процесс работы газотурбинного двигателя, то можно выделить несколько этапов, которые в соединении описывают сложный процесс преобразования энергии сжатого газа в механическую работу. Какие это этапы?

  • Подача и смесь. Атмосферный воздух в сжатом виде поступает из компрессора в камеру сгорания. Туда же поступает и топливо, в результате чего получается топливная смесь, которая в процессе сгорания выделяет очень много энергии.
  • Преобразование. После того, как топливная смесь в процессе сгорания преобразуется в энергию, необходимо преобразовать ее в механическую работу. Это происходит благодаря вращению специальных «лопаток» струей газа под большим давлением.
  • Разделение работы. Часть полученной механической работы от энергии топливной смеси, уходит на сжатия воздуха для следующей подачи, в компрессоре, а остальная энергия передается на приводимый агрегат.

Именно та работа, которая передается на приводимый агрегат и называется полезной! К слову, газотурбинный двигатель по праву считается двигателем, имеющим наибольшую удельную мощность, среди остальных двигателей внутреннего сгорания. Топливом к газотурбинному двигателю можно считать практически любое горючее: керосин, бензин, мазут, природный газ, дизельное топливо, судовое топливо, водяной газ, спирт, а также мелкий уголь!

Принцип работы газотурбинных двигателей.
Чтобы добиться высокого КПД в тепловом двигателе, необходимо добиться высокой температуры сгорания топливной смеси, но не всегда это можно достичь. Препятствиями можно назвать не способность материалов, из которых построен двигатель (никель, сталь, керамика и прочие) выдерживать большие температуры и давление. Очень большое количество трудов инженеров было направлено на то, чтобы успешно отводить тепло от турбины и использовать его там, где это необходимо. Смело можно сказать, что их работа была проведена не зря, ведь в настоящее время, благодаря подобным разработкам, было достигнута эта цель путем перенаправления тепла выхлопных газов, сжатому воздуху. Такой процесс называется рекуперирование. Это очень успешных подход, ведь в противном случае тепло выхлопных газов было бы просто утеряно, а так, оно способно служить источником нагрева сжатого воздуха, перед процессом дальнейшего сгорания. Таким образом, можно смело утверждать, что без этого процесса и специальных теплообменников (рекуператоров) не удалось бы достигнуть столь высокого КПД.

Максимальная скорость вращения турбинных лопаток, определяет максимальное давление, которое нужно достигнуть для получения наивысшей мощности двигателя. При этом, как правило, чем меньше двигатель, тем выше должна быть частота вращения вала, для поддержания максимальной скорость турбинных лопаток.

Устройство газотурбинного двигателя.
Что касается устройства, тут все не так и сложно, как можно себе представить. Газотурбинный двигатель состоит из камеры сгорания, где также установлены свечи зажигания и форсунка, для подачи топлива и получения искры в камере сгорания. Турбинное колесо со специальными лопатками установлено на одном валу с компрессором. К устройство двигателя также относятся: понижающий редуктор, теплообменник, выпускной трубопровод, впускной канал, а также диффузор и сопла.

При вращении вала компрессора, его лопасти захватывают воздух, который поступает через впускной канал. После того, как компрессор увеличивает скорость движения до 500 метров в секунду, он нагнетает его в диффузор. На выходе диффузора, скорость воздуха уменьшается, но с тем же повышается его давление. После диффузора, воздух попадает в теплообменник, где нагревается теплом отработанных газов и переходит в камеру сгорания. Помимо подогретого и сжатого воздуха, в камеру сгорания постоянно подается топливо в распыленном виде, через форсунку. Топливо смешивается с воздухом, образуя топливную смесь, далее эта смесь воспламеняется, с помощью искры, которую производит свеча. В результате сгорания, давление в камере повышается, нагретые газы проходят через сопло и попадают на лопатки турбинного колеса, которые приводятся в движение. Крутящий момент турбинного колеса передается через понижающий редуктор на трансмиссию автомобиля. Отработанные газы подходят в теплообменник, где подогревают поступивший сжатый воздух и выходят в атмосферу.

Основным недостатком газотурбинного двигателя  является стоимость тепло прочных материалов, из которых должен быть построен двигатель. Помимо этого сложность работ и высокая степень очистки воздуха, который попадает в двигатель, также хорошо бьют по карману, но не смотря ни на что, разработка и усовершенствование газотурбинного двигателя уже вовсю проходит как в нашей стране, так и за границей.

Типы газотурбинных двигателей.
Касательно типов, их очень большое количество, при этом суть работы одна и та же, но выполнение – немного различно. В зависимости от типов, газотурбинный двигатель имеет широкое применение на морских судах, железнодорожных составах, автомобилях, самолетах, вертолетах и даже в танках.К слову на сегодняшний день лишь американский танк Абрамс М1А1 оснащен газотурбинным двигателем.У советских инженеров тоже были попытки применить ГТД на танках,было даже несколько прототипов на базе Т-80,но почему то дальнейшие разработки были свёрнуты.

yamotorist.ru

Газотурбинная установка — Википедия

Газотурбинная установка (ГТУ) — энергетическая установка: конструктивно объединённая совокупность газовой турбины, электрического генератора, газовоздушного тракта, системы управления и вспомогательных устройств (пусковое устройство, компрессор, теплообменный аппарат или котёл-утилизатор для подогрева сетевой воды для промышленного снабжения).[источник не указан 3060 дней]

Газотурбинная установка состоит из двух основных частей: силовая турбина и электрический генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Использование тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.

ГТУ может работать как на жидком, так и на газообразном топливе[1]: в обычном рабочем режиме — на газе, а в резервном (аварийном) — автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ в энергетике работают как в базовом режиме, так и для покрытия пиковых нагрузок.

В настоящее время газотурбинные установки начали широко применяться в малой энергетике [источник не указан 3614 дней].

ГТУ предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Области применения газотурбинных установок практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования.

Блочно-модульное исполнение ГТУ обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, дистанционно [источник не указан 3614 дней].

ru.wikipedia.org


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML.