Ключ к знанию

Охлаждение что такое


Значение слова ОХЛАЖДЕНИЕ. Что такое ОХЛАЖДЕНИЕ?

Охлаждение — понижение температуры тела теплокровных животных и человека.

Гипотермия — состояние организма, при котором температура падает ниже нормы.

Криобиология — раздел биологии, изучающий воздействие холода на живые организмы.

Криотерапия — лечение холодом.

Терморегуляция — способность организма поддерживать температуру тела.

Охлаждение — передача тепловой энергии посредством теплового излучения, конвекции и теплопроводности.

Искусственное охлаждение — понижение температуры (получение искусственного холода) тела или среды с помощью специальной техники, приспособлений и устройств.

Технологии

Жидкостное охлаждение — охлаждение при взаимодействии с жидкостью.

Лазерное охлаждение — охлаждение при взаимодействии с полем лазерного излучения.

Термоэлектрическое охлаждение — охлаждение с помощью элемента Пельтье, термоэлектрического преобразователя.

Вихревой эффект — эффект, используемый для охлаждения.

Технология перекачиваемого льда — использование веществ близких по свойствам ко льду, но пригодных для передачи по трубам.

Системы

Система охлаждения двигателя внутреннего сгорания — система отвода выделяемого тепла от двигателя.

Система охлаждения компьютера — набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Отопление, вентиляция и кондиционирование — технические решения для поддержания заданных параметров воздуха во внутренних помещениях.

Кондиционирование воздуха — автоматическое поддержание во внутренних помещениях всех или отдельных параметров воздуха.

Устройства

Градирня — башня на крупных предприятиях и теплостанциях для охлаждения воды.

Интеркулер — промежуточный охладитель в системе наддува.

Кулер — система охлаждения отдельных элементов в электронике.

Радиатор — устройство для рассеивания тепла в воздухе.

Тепловая трубка — элемент системы охлаждения.

Теплообменник — устройство для обмена теплом между теплононосителями.

kartaslov.ru

Искусственное охлаждение — Википедия

У этого термина существуют и другие значения, см. Охлаждение. Холодильник в супермаркете

Охлаждение или рефрижерация[1] (англ. refrigeration) — отвод теплоты из одного места в другое, процесс понижения температуры (получение искусственного холода) тела или среды с помощью специальной техники, приспособлений и устройств; противоположно нагреву. В промышленности и технике искусственный холод получают в основном используя холодильные машины и охлаждающие смеси[2].

В прикладных целях достигается отводом определённого количества теплоты и традиционно осуществляется с помощью механической работы, но может осуществляться под действием тепла, магнетизма, кинетического испарения атомов, электричества, испарения, с помощью лазера и другими способами. Установки для создания искусственного холода — холодильники и кондиционеры производят отбор тепла либо просто перемещением теплоносителя (например, воздуха) из менее нагретых мест в охлаждаемые, либо по принципу теплового насоса, путём создания возле охлаждаемой области разрежения для испарения жидкости-теплоносителя, например, перекачиванием фреона по трубкам, либо (реже) посредством эффекта Пельтье. Для относительно кратковременного искусственного холода в условиях отсутствия источника энергии применяют аккумуляторы холода или сухой лёд.

Тепловые насосы могут использовать теплоту, выделяемую при процессе охлаждения, а также могут работать по обратному циклу, при этом они аналогичны холодильным установкам.

Охлаждение имеет множество применений, включая, но не ограничиваясь: бытовые холодильники, промышленные морозильники, криогенную технику и кондиционирование воздуха. Развитие методов охлаждения оказало большое влияние на промышленность, образ жизни, сельское хозяйство и урбанизацию.

Идея сохранения продуктов с помощью охлаждения восходит к древним Римской и Китайской империям. Однако, в XIX веке холодильная техника быстро эволюционировала от сбора льда и снега до железнодорожных вагонов с контролируемой температурой. Появление рефрижераторных вагонов способствовало экспансии на запад Соединённых Штатов Америки, возникли поселения в районах, которые не были на основных транспортных каналах таких как, например, реки, гавани, или горные тропы. Поселения также появились в бесплодных районах страны, богатых природными ресурсами. Развитие холодильной техники способствовало строительству крупных городов, которые стали процветать в областях, где без холодильников и кондиционеров жизнь была бы неустойчивой, таких как Хьюстон, штат Техас, и Лас-Вегас, штат Невада.

Развитие производства продуктов питания, их доступность для всего населения, оказали большое влияние на питание общества. В большинстве развитых стран города сильно зависят от холодильников в супермаркетах, выживание зависит от получения пищи для ежедневного потребления. Увеличение спроса на продукты питания привело к большей производительности сельскохозяйственных земель и уменьшению количества существующих хозяйств. Фермы сегодня производят гораздо больше продукции на одного занятого в хозяйстве человека по сравнению с концом 1800-х годов.

Методы охлаждения могут быть классифицированы как:

  • нециклические,
  • циклические,
  • термоэлектрические,
  • магнитные.

Нециклическое охлаждение[править | править код]

Изолированный кулер для охлаждения напитков Спасатели несут переносной холодильник

Нециклическое охлаждение осуществляется за счет таяния льда или сублимации сухого льда (твердой формы углекислого газа). Эти методы используются для небольших холодильников, например, в лабораториях и мастерских, или для переносных холодильников.

Система охлаждения[править | править код]

Влияние на сельское хозяйство и пищевую промышленность[править | править код]

Роль сельского хозяйства в развитых странах резко изменилась в прошлом веке из-за многих факторов, в том числе развития холодильных технологий. Статистика переписи 2007 года дает информацию о большей производительности сельскохозяйственных земель и уменьшении количества существующих хозяйств в Соединённых Штатах Америки. Частично это результат рынка замороженного мяса, созданного первыми успешными продажами партий замороженных овечьих туш, поступающих из Новой Зеландии в 1880-х годах. Так как рынок продолжал расти были введены правила пищевой обработки и контроль за качеством. В дальнейшем электричество, проведённое в сельские дома в США, что позволило использовать холодильную технику, привело в дальнейшем к развитию фермерских хозяйств, увеличению их производительности. Сегодня использование холодильников на фермах позволяет избежать порчи из-за роста бактерий и способствует сохранению продуктов.

Производство мясных продуктов и торговля[править | править код]

К 1882 году на Южном острове Новой Зеландии добились успехов в посеве трав и селекции овец, что сразу дало экономический потенциал для экспорта фермерского мяса. В 1882 году первая партия замороженных овечьих туш была успешно отгружена и отправлена из порта Чалмерс в Данидине, Новая Зеландия, в Лондон. В 1890-х годах торговля мясом стала прибыльным бизнесом в Новой Зеландии, особенно в Кентербери, где 50 % овечьих туш шло на экспорт в 1900 году. Вскоре кентерберийское мясо стало известно за высокое качество, создав спрос на новозеландское мясо по всему миру. Для удовлетворения этого спроса фермеры улучшили питание овец, откармливая их на убой всего за семь месяцев. Метод доставки в замороженном виде привёл к экономическому буму в Новой Зеландии в середине 1890-х годов[3].

В США в 1891 году был принят «Закон о контроле качества мясных продуктов», потому что местные мясники почувствовали, что система рефрижераторных вагонов была нездоровой[4]. Когда производство мясных продуктов начало расти, потребители стали нервничать по поводу качества мяса для потребления. Книга The Jungle Эптона Синклера привлекла негативное внимание к мясной промышленности и вывела на свет антисанитарные условия труда и переработку больных животных. Эта книга привлекла внимание президента Теодора Рузвельта, и в 1906 году был введен в действие «Закон о контроле качества мясных продуктов» в качестве поправки к «Закону о контроле качества мясных продуктов» 1891 года. Этот новый закон регламентировал качество мяса и условия его переработки[5].

ru.wikipedia.org

что лучше использовать обычному пользователю

Последнее обновление - 4 января 2020 в 14:25

Для охлаждения современных компьютеров и их компонентов придумано несколько основных типов и способов. В этой статье я рассмотрю основные виды охлаждения ПК. Давайте начинать ...

Жидкостное

Принцип работы состоит в передаче тепла от нагревающегося элемента охлаждающему радиатору. Это происходит при помощи рабочей жидкости (обычно воды), которая циркулирует в системе по специальным трубкам.

Плюсы →

  • Эффективность охлаждения, лучше традиционного воздушного
  • Качественные системы работают очень тихо
  • Такая система может выглядеть очень красиво в прозрачном корпусе, если есть подсветка.

Минусы →

  • Водянка будет стоить всегда дороже, чем вентиляторы
  • Высокие требования к качеству сборки и установки. Необходим надежный компьютерный корпус
  • Постоянный контроль за работой системы и ее обслуживание, если что-то пойдет не так и будет протечка жидкости, то вы можете лишиться дорогостоящего оборудования.

Воздушное

Можно разделить на →

  • Пассивное
  • Активное

Принцип работы пассивного охлаждения заключается в передаче тепла от нагревающегося элемента на радиатор. Радиатор может быть сделан из алюминия или меди, а более продвинутые модели имеют тепловые трубки, которые помогают увеличить площадь рассеивания тепла.

Радиатор полученное тепло рассеивает в окружающее пространство, тем самым отводя его от нагревающихся компонентов.

Эффективность такого пассивного охлаждения, напрямую зависит от циркуляции воздуха и его температуры.

Чем больше объема воздуха, участвует в теплообмене и чем ниже его температура, тем лучше работает пассивное охлаждение.

Субъективно, полностью пассивную воздушную систему охлаждения создать невозможно, так как для создания потоков воздуха внутри замкнутого объема, так или иначе нужны вентиляторы.

Плюсы →

  • Относительная бесшумность
  • Меньше вентиляторов — выше надёжность, но надо просчитать, хватит ли возможностей вашей пассивной системы для охлаждения всех компонентов компьютера.

Минусы →

  • Заводское пассивное охлаждение дорогое удовольствие. В основном им занимаются моддеры и энтузиасты, для которых цена не важна
  • Требуется компьютерный корпус большого объема, для достаточной циркуляции воздуха и продуманную систему охлаждения всего системного блока
  • В таких условиях, к разгону компьютера нужно подходить очень осторожно.

Ну а теперь подробно разберем активное воздушное охлаждение. Оно самое распространенное и недорогое. Главное подойти к его организации с умом.

В этом способе используются вентиляторы совместно с радиаторами. Обычно их называют куллерами. Вентилятор обдувает радиатор, который отводит тепло от греющего его компонента компьютерной системы. Чем больше воздушный поток проходящий через радиатор и чем он холоднее, тем эффективнее происходит охлаждение.

Плюсы →

  • Дешевле и надежнее, чем жидкостное охлаждение
  • Большая гибкость в организации систем охлаждения ПК.

Минусы →

  • Шум от большого количества работающих вентиляторов. Если брать вентиляторы большего размера, хорошего качества и с небольшой скоростью вращения, можно сильно снизить издаваемый шум системным блоком. Нужен комплексный подход
  • В мощных системах, где большое энергопотребление и соответственно высокое выделение тепла, требуется грамотная организация воздушных потоков и обдуманного подхода к охлаждению каждого сильно греющегося компонента (видеокарта и процессор).

Фреоновые установки

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. Это холодильник в компьютере.

В замкнутом контуре циркулирует газ (фреон), который забирает тепло от центрального процессора или видеокарты. Двигаясь дальше по контуру, он охлаждается в специальном радиаторе. Дальше, охлажденный фреон под давлением, поступает к охлаждаемым компонентам и процесс повторяется снова.

Плюсы →

  • Можно добиться очень низких температур, что положительно скажется на возможностях разгона.

Минусы →

  • Сложность монтажа и обслуживания
  • При неправильном подходе, может образовываться конденсат, что приведет к выходу из строя электроники
  • Высокое энергопотребление и цена.

Криогенное или азотное

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, с температурой кипения -196 градусов по Цельсию!

Криогенные системы охлаждения с жидким азотом представляют из себя металлический (чаще всего медный) стакан. Такие стаканы делают в основном для охлаждения процессора и видеокарты. Они, как и радиаторы, плотно закрепляются с охлаждаемым элементом. Далее компьютер запускается и начинает вручную наливаться в стакан/ы азот. В процессе охлаждения он постепенно испаряется, поэтому его постоянно необходимо подливать.

На охлаждении азотом, ставятся все рекорды по разгону железа.

Криогенные установки используются только для экстремального охлаждения.

Плюс у данного вида охлаждения ПК только один — этот способ лучше всего охлаждает.

Остальное — одни минусы. Цена, неудобство, сложность и т.п.

Элемент Пельтье

Термоэлектрический преобразователь (термоэлектрический охладитель), принцип действия которого базируется на возникновении разности температур при протекании электрического тока.

В принципе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости.

В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если нагревающуюся сторону элемента Пельтье охлаждать при помощи радиатора и вентилятора, то температура холодной стороны станет ещё ниже. Разность температур может достигать 70 °C.

До азотного охлаждения, энтузиасты использовали модуль Пельтье для охлаждения процессоров при экстремальном разгоне.

Плюсы →

  • Небольшие размеры
  • Отсутствие движущихся частей, газов и жидкостей
  • Бесшумность.

Минусы →

  • Более низкий КПД, чем у установок на фреоне. Это ведёт к большой потребляемой мощности для достижения заметной разности температур.

Так же существуют различные комбинации всех перечисленных выше систем, но их практическая реализация очень сложна.

По совокупности всех положительных качеств, лучшим способом охлаждения компьютера и комплектующих, остается воздушное охлаждение.

agepc.ru

охлаждение — Викисловарь

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. охлажде́ние охлажде́ния
Р. охлажде́ния охлажде́ний
Д. охлажде́нию охлажде́ниям
В. охлажде́ние охлажде́ния
Тв. охлажде́нием охлажде́ниями
Пр. охлажде́нии охлажде́ниях

о·хлаж-де́-ни·е

Существительное, неодушевлённое, средний род, 2-е склонение (тип склонения 7a по классификации А. А. Зализняка).

Приставка: о-; корень: -хлажд-; суффикс: -ениj; окончание: [Тихонов, 1996].

Произношение[править]

  • МФА: [ɐxɫɐˈʐdʲenʲɪɪ̯ə] 

Семантические свойства[править]

Значение[править]
  1. действие по значению гл. охладить; охлаждать ◆ Они греются, а системам охлаждения тоже нужна электроэнергия. Роман Дорохов, «Лекарство от жадности. Американские производители и военные хотят заставить компьютеры потреблять меньше энергии», 2002 г. // «Известия» (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Она состоит из направленного бурового станка с гидравлическим приводом и насосной установки, которая подаёт в гидродвигатели масло под высоким давлением и воду для смазки и охлаждения инструмента. «обобщённый», БНТИ (Бюро научно-технической информации) г. // «Наука и жизнь» (цитата из Национального корпуса русского языка, см. Список литературы)
  2. действие или состояние по значению гл. охладиться; охлаждаться ◆ Тем более странно, что нагревание одного тела связано с охлаждением другого. А. А. Азольский, «Лопушок», 1998 г. // «Новый Мир» (цитата из Национального корпуса русского языка, см. Список литературы)
  3. перен. утрата или ослабление способности относиться к кому-либо, чему-либо с чувством, с увлечением; состояние полного равнодушия ◆ И потому, присматриваясь к Бенкендорфу ― тот всё ещё сидел в креслах на палубе, хотя ветер свежел, ― Милий Алексеевич внятно, но не сполна сознавал печаль его. Да, тревожило охлаждение государя. Тревожило и обижало, как незаслуженное. Ю. В. Давыдов, «Синие тюльпаны», 1988—1989 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Охлаждение овладевало им ещё быстрее, нежели увлечение. И. А. Гончаров, «Обломов», 1859 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Ибрагим предвидел уже минуту её охлаждения. А. С. Пушкин, «Арап Петра Великого», 1828 г. (цитата из Национального корпуса русского языка, см. Список литературы)
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Список всех слов с корнем «холод-/хлад-/хлажд-/хлаж-/холон-»
  • топонимы: Прохладный
  • существительные: хлад, холод, холодец, холодильник, холодность, охладитель, охлаждение, переохлаждение, похолодание, прохлада, прохладность, прохлаждение, расхолаживание, хладнокровие, хладнокровность, холоднокровность
  • прилагательные: хладный, холодильный, холодный, охлаждающий, прохладный, прохладительный, хладнокровный, холоднокровный
  • глаголы: хладеть, холодать, холодеть, холодить, холоднеть, холонуть, захолодать, захолонуть, охладевать, охладеть, охладить, охладиться, охлаждать, охлаждаться, охолодеть, охолонить, охолонуть, похолодать, похолодеть, переохладить, переохладиться, переохлаждать, переохлаждаться, прохлаждаться, расхолаживать
  • причастия: холодавший, холодевший, холодивший, захолодавший, захолонувший, охладевавший, охладевший, охладивший, охлаждавший, охлаждающий, похолодавший, похолодевший
  • предикативы: прохладно, холодно
  • наречия: холодно, холодновато, прохладно, хладнокровно

Этимология[править]

Происходит от гл. охлаждать, далее из праслав. *хоldъ, от кот. в числе прочего произошли: ст.-слав. хладъ, русск., укр. холод, белор. холад, болг. хлад (ъ́т), сербохорв. хла̑д (род. п. хла̑да), словенск. hlȃd, чешск., словацк. chlad, польск. chłód (род. п. chłodu), в.-луж. khłódk «тень», н.-луж. chłodk. Вероятно, форма с вариантным kh- в начале слова, родственная готск. 𐌺𐌰𐌻𐌳𐍃 (kalds) «холодный», лат. gelidus; предположительно, из праиндоевр. *geldh-, представленного в др.-инд. hlā́datē «освежается», prahlādas «освежение, наслаждение»; возводят также к *kalt- — в лит. šáltas «холодный», осет. sald «холод», авест. sarǝta- «холодный». Другие считают исходным начало слова ks-, сравнивая *хоldъ с лит. šáltas «холодный». Использованы данные словаря М. Фасмера. См. Список литературы.

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

состояние полного равнодушия

Библиография[править]

Для улучшения этой статьи желательно:
  • Добавить синонимы в секцию «Семантические свойства»
  • Добавить гиперонимы в секцию «Семантические свойства»
  • Добавить хотя бы один перевод для каждого значения в секцию «Перевод»

ru.wiktionary.org

Охлаждение пищевых продуктов - это... Что такое Охлаждение пищевых продуктов?


Охлаждение пищевых продуктов
        искусственное понижение температуры растительных и животных пищевых продуктов для замедления или частичного прекращения жизнедеятельности микроорганизмов, вызывающих их порчу. В результате О. п. п. происходит также снижение активности ферментов, приводящее к нежелательным изменениям качества продуктов. О. п. п. применяется как самостоятельный процесс или как предварительная стадия обработки перед замораживанием пищевых продуктов (См. Замораживание пищевых продуктов). Охлаждению подвергают обычно продукты, в которых ещё продолжаются внутренние физиологические процессы, например дыхание фруктов, овощей. При этом температуру доводят до уровня, при котором активность микрофлоры и ферментов сводится к минимуму. Температура О. п. п. не должна быть равна температуре замерзания или ниже её во избежание кристаллизации воды в клетках и разрушения нормальной структуры продуктов. Обычно для плодов и овощей она составляет от — 1 до — 1,2° С. Для некоторых продуктов из-за их физиологических особенностей требуются специальные условия хранения; например, цитрусовые хранят при температуре не ниже 4—5° С; картофель — не ниже 4° С, т. к. при более низкой температуре усиливается процесс образования сахаров из крахмала, появляется нежелательный сладкий привкус. Охлажденные животные продукты хранят при температурах, близких к точке замерзания (например, мясо от — 1 до О° С, рыбу от — 0,3 до О° С).

         О. п. п. производят в камерах или в специальных установках, в которых одновременно со снижением температуры поддерживается требуемая влажность воздуха. Рыбные продукты иногда охлаждают во льду. Применяют также вакуумное О. п. п., в частности для лиственных овощей. Сроки хранения охлажденных продуктов: рыбных 2—10 сут, мяса (при перевозках в вагонах-ледниках) 8—12 сут. Сроки хранения свежих плодов и овощей: 7—12 сут для зелёных овощей и летних ягод, 1—6 мес для летних яблок, груш, цитрусовых, капусты, до 1 года для картофеля, корнеплодов, зимних яблок. При хранении охлажденных пищевых продуктов происходит потеря их массы вследствие испарения влаги, а для свежих плодов и овощей — также и за счёт процесса дыхания.

         А. Ф. Наместников.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Охлаждение двигателя
  • Охлаждение электрических машин

Смотреть что такое "Охлаждение пищевых продуктов" в других словарях:

  • охлаждение кулинарной продукции — Кулинарная обработка, заключающаяся в снижении температуры кулинарной продукции с целью доведения ее до кулинарной готовности, хранения или дальнейшего использования. [ГОСТ 30602 97] Тематики услуги населению Обобщающие термины способы кулинарной …   Справочник технического переводчика

  • Глубокое охлаждение —         охлаждение веществ с целью получения и практического использования температур, лежащих ниже 170 К. Г. о. обеспечивается рабочими веществами, критическая температура которых лежит ниже 0°С (273,15 К), воздухом, азотом, гелием и др. Область …   Большая советская энциклопедия

  • интенсивное охлаждение кулинарной продукции — Быстрое охлаждение кулинарной продукции до низких плюсовых температур, производимое в специальном холодильном оборудовании, с целью сохранения качества и увеличения сроков ее хранения. [ГОСТ 30602 97] Тематики услуги населению Обобщающие термины… …   Справочник технического переводчика

  • Ледосоляное охлаждение —         получение искусственного холода в результате таяния смеси льда и некоторых солей. Понижение температуры при Л. о. происходит вследствие поглощения теплоты при плавлении льда и растворении соли. Состав охлаждающей смеси (См. Охлаждающие… …   Большая советская энциклопедия

  • Консервирование — I Консервирование пищевых продуктов (лат. conservare хранить, сохранять) обработка пищевых продуктов, позволяющая предотвратить их порчу при длительном хранении и сохранить при этом питательные и вкусовые свойства. Продукты портятся главным… …   Медицинская энциклопедия

  • Холодильная техника — I Холодильная техника         отрасль техники, охватывающая вопросы получения и применения холода искусственного (См. Холод искусственный) в области температур от 10 до 150 °С. Получение более низких температур является задачей криогенной техники …   Большая советская энциклопедия

  • Холодильная техника — I Холодильная техника         отрасль техники, охватывающая вопросы получения и применения холода искусственного (См. Холод искусственный) в области температур от 10 до 150 °С. Получение более низких температур является задачей криогенной техники …   Большая советская энциклопедия

  • Холодильник промышленный —         сооружение, предназначенное для охлаждения, замораживания и хранения скоропортящихся пищевых и др. продуктов при низких температурах. Крупный Х. п., функционирующий как самостоятельное предприятие, включает: охлаждаемый склад с… …   Большая советская энциклопедия

  • Холодильный транспорт —         хладотранспорт, совокупность передвижных транспортных средств, предназначенных для перевозки скоропортящихся пищевых продуктов (мясо, рыба, свежие овощи и фрукты и т.д.) при температурах, обеспечивающих сохранность этих продуктов (см.… …   Большая советская энциклопедия

  • Вагон-ледник — Вагон ледник. 1870 й год, США …   Википедия

dic.academic.ru

Обзор самодельных систем охлаждения видеокарт | Вентиляторы охлаждения | Блог

Если вы застали компьютерные форумы и блоги нулевых годов, то наверняка помните фотографии видеокарт, к которым прикручены кулеры от процессоров. Давайте вспомним самодельные системы охлаждения видеокарт, зачем их делали и почему их нет в наше время.

В нулевые годы бурно расцвели самодельные системы охлаждения для видеокарт. "Кулибины" с компьютерных форумов меняли на видеокартах вентиляторы, ставили радиаторы от процессоров и городили дополнительный обдув.
Условно, эти самоделки можно разделить на несколько уровней.

Дополнительный обдув видеокарты

Обычно брался вентилятор на 120 или 80 мм и закреплялся таким образом, чтобы обдувать проблемные места видеокарты: зону VRM, память, обратную сторону текстолита над чипом. Решение было простое и очень эффективное.

Ведь вмешательства в систему охлаждения видеокарты не было и товарный вид не страдал. Дополнительный обдув легко снимался и видеокарту можно было продать на б/у рынке или отнести в магазин по гарантии.


Так же этот способ был наименее рискованным, шансы повредить видеокарту были минимальны. "Как может один вентилятор так улучшить охлаждение?" - спросите вы. Чем хуже охлаждение на подопытной видеокарте, тем сильнее заметен эффект от таких кустарных методов.


Если вы избалованы дорогими моделями видеокарт с несколькими теплотрубками в радиаторе и дополнительным охлаждением чипов памяти и зоны конвертера питания, то вам не понять, в каких тяжелых условиях трудятся дешевые модели видеокарт. Особенно — дешевые модели среднего уровня, где и тепловыделение уже приличное, а производитель сэкономил на всем, чем можно.

90-110 градусов на чипах памяти и зоне VRM на таких видеокартах — это обычное дело, и в таком случае дополнительный обдув — это спасение. Он легко может скинуть 10-20 градусов с системы питания и чипов памяти, что давало видеокарте возможность нормально работать без перегрева.

Я и сам делал такие системы обдува в нулевые годы. Как мне казалось, переболел этой "самодеятельностью" навсегда, думая, что делать этого больше не придется, однако нужда заставила.

В 2017 году, когда после скачка курса криптовалют майнить их стали даже не разбирающиеся в компьютерах люди и на любом доступном оборудовании, я не удержался и докупил к уже имеющейся Gigabyte GeForce GTX 1060 G1 Gaming, Palit GeForce GTX 1070 Jetstream. И сразу столкнулся с перегревом в корпусе компьютера, видеокарты стали нагревать друг друга. По отдельности, эти модели видеокарт вполне добротные середнячки в плане охлаждения, но вместе выделяли слишком много тепла.

Держать компьютер открытым я не мог из-за детей и котов, поэтому пришлось изобретать дополнительное охлаждение, как и в нулевые годы.

Я ставил дополнительный вентилятор на боковую крышку компьютера на вдув и выдув, но самым эффективным оказался продув видеокарт с торца вентилятором 140 мм. Температуры пришли в норму и можно было спокойно майнить дальше.

Кстати, следующий уровень переделки систем охлаждения видеокарт тоже снова расцвел в связи с майнингом.

Замена вентиляторов охлаждения

Эта процедура уже посложнее и требует хотя бы минимальных знаний по сборке компьютеров. В нулевые годы массовые видеокарты имели довольно низкое энергопотребление и комплектовались маленьким радиатором со смешным вентилятором размера 40 мм. 
Эти вентиляторы не отличались качеством и начинали трещать через несколько месяцев работы.

Самым простым способом ремонта была замена маленького вентилятора на полноценный, размером 80 или 92 мм с приличными оборотами. Питание такого вентилятора обычно подключали к разъему "молекс" блока питания, и он крутился на постоянных оборотах без регулирования.

Более опытные пользователи подключали вентилятор через реобас и прибавляли обороты на время игры. Но, назвать удобным такой метод конечно нельзя. Зато ему не откажешь в эффективности, такой вентилятор обычно решал и проблему с перегревом.

В 2017 году, после майнинг бума, количество видеокарт, задействованных в майнинге, было огромным. И первое, что стало ломаться на видеокартах, работающих круглые сутки — это вентиляторы. Они выходили из строя массово и в интернете стал очень популярным способ, когда на видеокарту ставился один или два вентилятора 92-120 мм на стяжки.

Это очень эффективный метод, который решал проблему и шума и нагрева. Вентиляторы 120 мм создавали приличный воздушный поток и даже на постоянных 1000 оборотах в минуту их было достаточно. Я применял такой способ на GeForce GTX 660 с затрещавшим вентилятором (без майнинга) и остался очень им доволен.

Замена радиатора охлаждения на процессорный

Как я уже писал выше, энергопотребление видеокарт в нулевые годы было довольно низким и на них зачастую ставили смехотворно маленькие радиаторы. Например: GeForce 8800 GT (512 Мбайт) в играх потреблял около 111 ватт, GeForce 7900 GTX (512 Мбайт) - 84 ватта. Radeon X1900 XT (512 Мбайт) который считался жутко горячим - 130 ватт.

А более бюджетные видеокарты среднего уровня потребляли совсем немного: Radeon X1600 XT (256 Мбайт) - 42 ватта, Radeon HD 3850 (256 Мбайт) - 72 ватта, GeForce 7600 GT (256 Мбайт) - 39 ватт.

И замена радиатора на процессорный на таких видеокартах решала сразу три проблемы: уменьшала шум, уменьшала нагрев, повышала разгонный потенциал.

А разгонный потенциал тогда был очень серьезный. Производители еще не придумали тогда систему буста, когда видеокарта разгоняет саму себя, в зависимости от потребления тока, температуры и нагрузки. И пользователям приходилось разгонять видеокарты самостоятельно.
Тогда произошел бурный рост программ для разгона: RivaTuner, ATI Tray Tools, NVIDIA nTune, PowerStrip. ATI Tray Tools мог изменять даже тайминги памяти в реальном режиме времени.

Донором радиатора обычно становился боксовый кулер от процесора Intel с медным сердечником. Он подходил на эту роль идеально, за счет своей формы в виде множества радиальных ребер. В промежуток между ребрами вставлялись длинные болтики.


Часть ребер надо было отпилить или отломить. Обеспеченные умельцы брали дорогие кулеры, типа ZALMAN - CNPS7000C-Cu и курочили уже их. Но на изуродованный ZALMAN было просто больно смотреть, особенно учитывая, что продавались отличные видеокулеры ZALMAN VF900-Cu и Zalman VF700-Cu.

Даже младший Zalman VF700-Cu отлично справлялся со средними видеокартами тех лет, что уж говорить о старшей модели, которая легко могла отвести тепло от ATI Radeon X1900 XTX.

Видеокарты часто становились жертвами таких переделок, особенно если не использовалась прижимная пластина с обратной стороны. В таком случае видеокарту выгибало дугой и рвало дорожки в текстолите или отрывало шары BGA-пайки чипа и памяти.

Рассвет и закат альтернативных систем охлаждения

В начале 2010 годов тепловыделение видеокарт резко пошло вверх, что поставило крест на попытках охладить их обычным алюминиевым радиатором, пусть даже и с медным сердечником. И постепенно, такая переделка сошла на нет.

К тому же, производители альтернативных систем охлаждения просто завалили рынок отличными кулерами, достаточно вспомнить Zalman VF3000F, Thermalright Shaman или DEEPCOOL DRACULA.

Отдельные энтузиасты ставили на видеокарты кулеры с теплотрубками от процессоров, но это решение было настолько громоздким, что такие случаи были единичны.

Но постепенно сошла на нет и установка на видеокарты суперкулеров типа Thermalright Shaman. Почему? Я считаю, что из-за расширения ассортимента моделей видеокарт, роста сложности их плат и схемотехники, внедрения механизма буста.

Экономный пользователь берет недорогую видеокарту и она работает на заявленных частотах. А видеокарты с топовыми заводскими кулерами настолько повышают бустовую частоту, что исчезает надобность их разгонять.


А установка альтернативной системы охлаждения довольно сложна и есть риск повредить видеокарту сразу, сколов кристалл или CMD-резистор. Или испортив уже в процессе эксплуатации, допустив перегрев памяти или системы питания.

А вы пробовали менять охлаждение на видеокарте на альтернативное?

club.dns-shop.ru

Их типы, виды и разновидности

Системы охлаждения компьютера бывают разных типов и разной эффективности. Вне зависимости от этого, у них у всех одна и та же цель: остудить устройства внутри системного блока, чем предохранить их от сгорания и повысить эффективность работы. Разные системы предназначены для охлаждения разных устройств и делают они это при помощи разных способов. Это, конечно, не самая захватывающая тема, но меньше важной она от этого не становится. Сегодня мы подробно разберемся какие системы охлаждения нужны нашему компьютеру, и как добиться максимальной эффективности их работы.

Для начала предлагаю быстренько пробежаться по системам охлаждения вообще, дабы к изучению компьютерных их разновидностей мы подошли максимально подготовленными. Надеюсь, что это сэкономит наше время и упростит понимание. Итак. Системы охлаждения бывают…

Воздушные системы охлаждения

Сегодня это наиболее распространенный тип систем охлаждения. Принцип его действия очень прост. Тепло от нагревающего компонента передается на радиатор с помощью теплопроводящих материалов (может быть прослойка воздуха или специальная теплопроводящая паста). Радиатор получает тепло и отдает его в окружающее пространство, которое при этом либо просто рассеивается (пассивный радиатор), либо сдувается вентилятором (активный радиатор или кулер). Такие системы охлаждения устанавливаются непосредственно в системный блок и практически на все греющиеся компьютерные компоненты. Эффективность охлаждения зависит от размеров эффективной площади радиатора, металла из которого он сделан (медь, аллюминий), скорости проходящего потока воздуха (от мощности и размеров вентилятора) и его температуры. Пассивные радиаторы устанавливаются на те компоненты компьютерной системы, которые не очень сильно греются в процессе работы, и возле которых постоянно циркулируют естественные воздушные потоки. Активные системы охлаждения или кулеры разработаны в основном для процессора, видеоадаптера и прочих постоянно и напряженно работающих внутренних компонентов. Для них иногда могут устанавливаться и пассивные радиаторы, но обязательно с более эффективным чем обычно отводом тепла при низкой скорости воздушных потоков. Это дороже стоит и применяется в специальных бесшумных компьютерах.

Жидкостные системы охлаждения

Чудо-диво-изобретение последней десятилетки, используется в основном для серверов, но в связи с бурным развитием техники, со временем имеет все шансы перебраться и в домашние системы. Дорого и немного страшно, если представить, но достаточно эффективно, поскольку вода проводит тепло в 30 (или около того) раз быстрее воздуха. Такой системой можно практически без шума одновременно охлаждать несколько внутренних компонентов. Над процессором помещается специальная металлическая пластинка (теплосъемник), которая собирает тепло с процессора. Поверх теплосъемника периодически прокачивается дистиллированная вода. Собирая с него тепло, вода попадает в радиатор охлажденный воздухом, остывает и начинает свой второй круг с металлической пластины над процессором. Радиатор при этом рассеивает собранное тепло в окружающую среду, охлаждается и ждет новую порцию нагретой жидкости. Вода в таких системах может быть специальная, например, с бактерицидным либо антигальваническим эффектом. Вместо такой воды может использоваться антифриз, масла, жидкие металлы или еще какая-нибудь жидкость, обладающая высокой теплопроводностью и высокой удельной теплоемкостью, дабы обеспечить максимальную эффективность охлаждения при наименьшей скорости циркуляции жидкости. Конечно, такие системы более дорогие и сложные. Они состоят из помпы, теплосъемника (ватерблок или головка охлаждения), прикрепленного к процессору, радиатора (может быть как активным, так и пассивным), обычно прикрепленного к задней части корпуса компьютера, резервуара для рабочей жидкости, шлангов и датчикв потока, разнообразных измерителей, фильтров, сливных кранов и пр. (перечисленные компоненты, начиная от датчиков, опциональны). Кстати, замена такой системы — занятие не для слабонервных. Это вам не вентилятор с радиатором поменять.

Фреоновая установка

Маленький холодильник, устанавливаемый прямо на нагревающийся компонент. Они эффективны, но в компьютерах применяются в основном, исключительно для разгона. Знающие люди говорят, что у него больше недостатков, чем достоинств. Во-первых, конденсат, который появляется на детальках, более холодных, чем окружающая среда. Как вам перспектива появления жидкости внутри святая святых? Повышенное энергопотребление, сложность и немалая цена – меньшие недостатки, но от этого достоинствами тоже не становятся.

 

Системы открытого охлаждения

В них используется сухой лед, жидкий азот либо гелий в специальном резервуаре (стакане), установленном прямо на охлаждаемом компоненте. Используется Кулибиными для самого экстремального разгона или оверклокинга, по нашему. Недостатки те же – дороговизна, сложность и пр. + 1 очень существенный. Стакан надо постоянно наполнять и периодически бегать в магазин за его содержимым.

Системы каскадного охлаждения

Две и более последовательно подключенные системы охлаждения (например, радиатор + фреон). Это самые сложные в реализации системы охлаждения, которые в состоянии работать без перерывов, в отличие от всех остальных.

Комбинированные системы охлаждения

Такие сочетают в себе элементы охлаждения систем различных типов. В пример комбинированных можно привести Ватерчпперы. Ватерчипперы = жидкость + фреон. Антифриз циркулирует в системе жидкостного охлаждения и кроме нее охлаждается еще и фреоновой установкой в теплообменнике. Еще более сложно и дорого. Сложность в том, что теплоизоляция понадобится и всей этой системе, зато этот агрегат можно применять для одновременного эффективного охлаждения сразу нескольких компонентов, что довольно сложно реализуется в других случаях.

Системы с элементами Пельтелье

Они никогда не используются самостоятельно и кроме этого, имеют наименьшую эффективность. Их принцип работы описал Чебурашка, когда предложил Гене понести чемоданы (“Давай я понесу чемоданы, а ты понесешь меня”). Элемент Пельтелье устанавливают на нагревающий компонент, а другую сторону элемента охлаждают другой, обычно воздушной или жидкостной системой охлаждения. Поскольку возможно охлаждение до температуры ниже окружающей среды, то проблема конденсата актуальна и в этом случае. Элементы Пельтелье менее эффективны, чем фреоновое охлаждение, но при этом тише и не создают вибраций, как холодильники (фреон).

Если вы никогда не замечали, то внутри вашего системного блока постоянно кипит бурнейшая деятельность: ток бегает туда-сюда, процессор считает, память запоминает, программы работают, жесткий диск вертится. Компьютер работает, одним словом. Из школьного курса физики мы знаем, что проходящий ток нагревает устройство, а если устройство греется, то это – нехорошо. В худшем случае оно просто перегорит, а в лучшем будет просто туго работать. (Это действительно частая причина не слабо тормозящей системы). Именно во избежание таких вот неприятностей внутри вашего системного блока предусмотрено несколько видов разнообразных систем охлаждения. По крайней мере, для самых важных компонентов.

Охлаждение системного блока

Как производится охлаждение? В основном – воздухом. Когда вы включаете компьютер, он начинает гудеть – включается вентилятор (очень часто их несколько), потом он затихает. Через несколько минут работы, когда ваша система достигла определенного порогового температурного значения, вентилятор включается вновь. И так все время работы. Самый большой и самый заметный вентилятор внутри системного блока просто выдувает из коробки нагревшийся воздух, чем и охлаждает все вместе взятое, включая компоненты, на которые трудно установить собственную систему охлаждения, например, жесткий диск. По законам той самой физики, на место нагретого воздуха через специальные вентиляционные отверстия в передней части системного блока, поступает охлажденный воздух. Точнее тот, который еще просто не успел нагреться. Охлаждая собой внутренние части компьютера, он нагревается сам и выходит через отверстия в боковой и/ или задней панели системного блока.

Охлаждение процессора

У процессора, как у очень важного и постоянно загруженного компонента вашего железного друга есть личная система охлаждения. Она состоит аж из двух компонентов – радиатора и вентилятора, конечно же меньших размеров, чем тот о котором мы только что говорили. Радиатор иногда называют теплосъемником, в соответствии с его основной функциональной деятельностью – он рассеивает тепло от процессора (пассивное охлаждение), а маленький вертилятор сверху сдувает тепло с радиатора (активное охлаждение). Кроме этого, процессор смазывается специальной термопастой, способствующей максимальной передаче тепла от процессора к радиатору. Дело в том, что поверхности и процессора, и радиатора даже после полировки имеют зазубрины около 5 мкм. В результате таких зазубрин между ними остается тончайший воздушный слой с очень низкой теплопроводимостью. Именно эти промежутки и замазываются пастой из вещества с высоким коэффициентом теплопроводности. У пасты ограниченный срок действия, соответственно, ее нужно менять. Это удобно делать одновременно с чисткой системного блока, о которой мы поговорим чуть ниже, тем более, что старая паста вообще может давать обратный эффект.

Охлаждение видеокарты

Современная видеокарта – это компьютер внутри компьютера. Система охлаждения крайне необходима и ей. У простеньких и дешевых видеокарт системы охлаждения может и не быть, а вот современные видеоадаптеры для игровых монстров в обязательном порядке нуждаются в освежающей прохладе, пожалуй, даже больше чем вы в сорокаградусную жару.

Загрязнение пылью

Вместе с воздухом из комнаты внутрь вашего системного блока поступает пыль. Причем, даже в регулярно убираемом и проветриваемом помещении, пыли, на диво, достаточно, чтобы за несколько месяцев ежедневной работы  опутать вашу новенькую крутилку неизвестно откуда взявшимися длинными, малоприятными для глаз шерстяными лохмами. Это дает обратный эффект – забиваются вентиляционные отверстия, а “лохмы” (кроме того, что они физически не позволяют крутиться вентилятору) не хуже норковой шубы согреют ваш компьютер до самого процессора, причем не только в тропический зной, но и в полярную вьюгу. Человек, насколько я знаю, болеет от переохлаждения, компьютер же вполне может заболеть от перегрева. Лечим бедолагу приблизительно раз в пол года не антибиотиками и горячим чаем с малиной, а пылесосом. Желательно приобретенном в специальном магазине компьютерной техники. Привычный, в очень крайнем случае, сойдет, но следует быть предельно осторожным со статическим электричеством. Его очень не любят внутренние компоненты.

Чистка системы охлаждения

Первый признак плохо работающей или не работающей совсем системы – “не гудит” вентилятор и греется системный блок. Кстати, это частая причина самовыключения компьютера или слишком медленной работы системы, а диагноз настолько прост, что может банально не прийти в голову. И начинается: обновление драйверов, сканирование антивирусом, аппаратное обновление системы, покупка дополнительных модулей оперативной памяти и прочие невеселые телодвижения. Смешно? Скорее печально. Срочно вскрываем пациента и смотрим, что у него внутри. Желательно перед этим поискать точный алгоритм проведения процедуры в технической документации у производителей материнки.

В принципе, в чистке системного блока нет ничего сложного. Нужно выключить компьютер, не забыв вытянуть шнур из розетки, разобрать системный блок и аккуратно очистить все внутренности от пыли. В магазинах продаются специальные пылесосы, которыми это делать лучше всего. Больше всего пыли скапливается на радиаторе с вентилятором и возле вентиляционных отверстий на системном блоке. Аккуратно удаляем с них пылевые накопления и смазываем при необходимости (у вентилятора нужно снять наклейку и капнуть несколько капель на ось вентилятора). Неплохо подойдет масло для швейных машинок. Кроме этого, необходимо очистить процессор от старой термопасты и намазать на него новую. Аналогичные действия повторяем с видеокартой и вентилятором системного блока. Осталось собрать компьютер и пользоваться им еще несколько месяцев перед проведением повторной чистки системного блока. Ноутбуки чистить тоже нужно, причем судя по моему опыту – несколько чаще, чем стационарные (малые расстояния между компонентами внутри ноута и потребление печенюшек и бутербродов рядом с ним любимым делают свое черное дело). Многие пользователи легко справляются с этой процедурой без помощи компьютерных специалистов, но лучше не спешить, особенно с ноутбуками, если вы не чувствуете себя достаточно уверенно. Риски: статическое электричество может вывести из строя материнку, процессор или что-нибудь еще, а также вы сами, в силу неопытности, запросто можете повредить что-нибудь важное. Шутки-шутками, но делать это действительно нужно, иначе проблем может появиться просто немерянное количество.

Если же вы почистили компьютер, но заметного облегчения это не принесло, возможно вам придется установить более сильную систему охлаждения. В самом легком случае может помочь дополнительный вентилятор. Чтобы узнать степень нагрева системных компонентов, можно заглянуть на сайт производителя материнской платы. Вполне возможно, что там вы найдете специальное программное обеспечение, которое поможет это определить. Усредненные показатели для процессора это 30-50 градусов, а в режиме нагрузки до 70-ти. Винчестер не должен греться более чем на 40 градусов. Более точные показатели следует проверить в технической документации.

В завершение описанного, хочу сказать, что в 90 (если не больше) процентах случаев вполне подойдет стандартная штатная система охлаждения. Метаться между качеством и ценой, а также внедрять систему охлаждения в свой компьютер (иногда это довольно рискованно и совсем не просто) действительно нужно владельцам серверов, мощных игровых компьютеров и любителям экспериментов с разгоном. Если же вы покупаете компьютер для дома или офиса, вам нужно просто поинтересоваться, что у него внутри, дабы возможная экономия производителя не вылезла для вас боком.

 

netclo.ru

Охлаждение системника... или водянка против воздуха | Сборка компьютера, апгрейд | Блог

Всем привет, хочу поделится впечатлениями от установки СЖО, охлаждении системника и т.д.

Состав системы

  • Процессор AMD FX6300
  • Метеринская плата ASUS TUF SABERTOOTH 990FX
  • Оперативная память G. Skill F3 1866 12GB
  • Видеокарта GIGABYTE AMD Radeon R9 270X
  • Корпус Deepcool MATREXX 55 (на вдув - Вентилятор DEEPCOOL UF120 - 3шт)
  • Блок питания Cooler Master GX 750W с кулером Cooler Master 4pin подключен к материнке
  • SSD. HDD

Параметры напряжения проца - авто в зависимости от темпрературы

Параметры частоты проца - авто -+20% в зависимости от вида нагрузки

Предыстория.

Все начилось с мысли поменять видеокарту, что-то типа 1070 от гигабайта, длинная такая на 3 кулера)) Т.к. она длинная мой старенький корпус и так был подрезан, для того чтобы запихнуть R9 270x от гигабайта, по этому было решено заменить корпус на более современный (старому корпусу лет 8 уже).

Мой выбор пал на

И тут понеслась)))

Подумал я - "а почему бы не заменить куллер на проце?" Мой предыдущий кулер - Scythe Katana 3, показался мне скудным и унылым на фоне нового корпуса!

Посмотрел что есть, почитал отзывы и тесты, выбор был между между башнями с 2мя вентиляторами DEEPCOOL Neptwin V2 или Scythe Fuma Rev.B, водянкой DEEPCOOL GAMMAXX L120T или Deepcool GAMMAXX L240

Выбор пал на

Тесты показывают, что за свои деньги - это рабочий вариант! Но мнения некоторых пользователей было такое - стоковый вентилятор, слабый и имеет изьян в виде прорезей, через которые выходит воздух и не идеть 100% на соты радиатора!

Я сразуже заменил стоковый на два DEEPCOOL UF120, установив их с 2х сторон!

Тесты и общие впечатления от СЖО

Температура процессора

в простое (после прогрева) - 50-52

в стресс тесте - 55-60 (как бы вполне приемлимо)

в WOT на максимуме - 62с (вентиляторы на 100%, взлетаем)

Температура питания(как оказалось вот откуда ноги растут)

в простое - 55

в стресс тесте -  65 (как бы вполне приемлимо)

в WOT на максимуме - 69 (вентиляторы на 100%, взлетаем)

По фото выше видно как радиатор питания закрыт со всех сторон и его практически ничего не обдувает! Это и стало первой ластачкой в проблеме охлаждения системника в общем!

Дальше я решил почитать тесты и обзоры вентиляторов для СЖО, как оказалось не все вентиляторы подходят для сот радиаторов СЖО. После получения новой инфы был куплен вентилятор для водянки

Результат такой же как и с 2мя DEEPCOOL UF120.  На пару градусов упала температура на питании проца. Звук от системника не изменился, вентиляторы работают на пределе!

Отсюда вывод - изначально купив много лет назад Scythe Katana 3, я сделал нереально грамотный выбор! )) Но это не только по этому, далее расскажу!

Теперь я понял свою ошибку - СЖО подходит не для всех материнок и корпусов!

Далее я задался поиском куллера, который хоть как-то направлен в сторону радиатора питания проца, не долго думал выбрал Scythe Choten

Правда я заменил стоковый кулер и поставил  Noiseblocker BlackSilentPro PL-PS, а стоковый от Scythe Choten поставил на выдув!

Тесты и впечатления от СВО

Температура процессора

в простое (после прогрева) - 46-48 (тишина)

в стресс тесте - 55-57 (отлично и не шумно)

в WOT на максимуме - 60-61с (нормально, вентиляторы на 70%, еще комфортно)

Температура питания

в простое - 50-52

в стресс тесте -  60-62

в WOT на максимуме - 63-65

Он отлично охлаждает и проц и радиатор питания! Не мешает "высокой" оперативе.  Можно перевернуть и охлаждать оперативу!

Как вы могли заметить, температура упала не на много, но есть огромный плюс - это шум, т.е. теперь чтобы поддерживать температуру даже меньшую чем было, нужно меньше скорости вентиляторов! Т.к. настройки скорости вентиляторов остались прежними, если их вывести на максимальную скорость, то думаю температура упадет еще больше, но шум выйдет за комфортный предел!

Выводы

Дешевое водяное охлаждение для домашнего компьютера малоэффективно, тем более с односекционным радиатором. Его плюсы - это отвод тепла от процессора, с непосредственным выдувом горячего воздуха из системника, но это если говорить о 3х секционном радиаторе! Возможно, такая дешевая водянка подойдет для ненагруженных систем, вместо боксового кулера, с инсталлом с закосом под моддинг.

Отдельный вывод о корпусе - до этого был узкий корпус, что давало возможность 2м 120мм вентиляторам хорошо обдувать компоненты материнской платы из-за узкого потока воздуха! В большом просторном корпусе поток воздуха рассеивается, тем самым хуже обдувает элементы материнки. Возможно, для таких корпусов нужны особые вентеляторы на продувку корпуса, ценник которых 1,5к+, но это не точно)) и я никогда об этом не узнаю))

Возможно моя статья поможет комуто в выборе охлаждения) Всем удачи!

club.dns-shop.ru

Испарительное охлаждение — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 марта 2015; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 марта 2015; проверки требуют 3 правки. Эта статья об охлаждении при кинетическом испарении атомов в магнитной ловушке; об охлаждении при испарении воды см. Испарительный охладитель.

Испарительное охлаждение (англ. evaporative cooling) — в атомной физике технология для снижения температуры группы атомов, предварительно охлажденных методом лазерного охлаждения. Процесс использует градиент магнитного поля для улавливания атомов в магнитную ловушку, пространственную конфигурацию для удержания. При столкновениях с течением времени отдельные атомы становятся гораздо энергичнее, чем другие, и они покидают ловушку, понижая тем энергию системы и снижая температуру группы, оставшихся в ловушке. Этот процесс, при котором частицы при столкновении преодолевают барьер, похож на привычный процесс, с помощью которого вода превращается в водяной пар.

Этот метод был разработан для изучения конденсата Бозе — Эйнштейна, экзотического состояния вещества, при котором большое число атомов оказывается в своих минимально возможных квантовых состояниях.

Впервые метод испарительного охлаждения был реализован 1995 году Эриком Корнеллом и Карлом Вименом из Национального института стандартов и технологии США и тогда же группой Рэндалла Хюлета для лития. Эрику Корнеллу и Карлу Виману удалось охладить около 2 тысяч атомов рубидия-87 до температуры 20 нанокельвинов и экспериментально подтвердить существование конденсата Бозе — Эйнштейна, за что они совместно с Вольфгангом Кеттерле, который четыре месяца спустя получил конденсат Бозе — Эйнштейна из атомов натрия, в 2001 году были удостоены Нобелевской премии по физике[1].

С тех пор методика была усовершенствована, в частности, командой Буйе в Лаборатории имени Шарля Фабри в Институте теоретической и прикладной оптики[en].

Применяется в авиатехнике , ЖКХ и металлургии .

  • M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell. Observations of Bose-Einstein Condensation in a Dilute Atomic Vapor (англ.) // Science. — 14 июля 1995. — No. 269. — P. 198–201. — ISSN 0036-8075. Архивировано 5 марта 2015 года.
  • J. J. Tollett, C. C. Bradley, C. A. Sackett, and R. G. Hulet. Permanent magnet trap for cold atoms // Physical Review A. — 1995. — № 51, R22. — ISSN 1050-2947.
  • P. Bouyer, V. Boyer, S.G. Murdoch, G. Delannoy, Y. Le Coq, A. Aspect, M. Lecrivain. RF-induced evaporative cooling and BEC in a high magnetic field (англ.) // Cornell University Library : e-print. — 22 марта 2003.

ru.wikipedia.org

Какой холодильник лучше? Система охлаждения холодильника

   Прежде всего, основной задачей любого бытового холодильника является хранение продуктов. Именно этот критерий является самым важным — качество хранения и длительность хранения. Большинство покупателей часто забывают об этом, глядя на красивый дизайн или увидев красивую рекламу. Да, эстетический вид и удобство фурнитуры холодильника вещь так же важная, особенно для современных покупателей. Но какой смысл в красоте, если ваш холодильник не выполняет своей основной функции — качественное хранение продуктов? Давайте всё же разберёмся, какой холодильник лучше?

   Система охлаждения современного холодильника — это та основа, которую должен знать и понимать любой покупатель. Владея актуальной информацией и понимая принцип устройства, для покупателя не составит большого труда выбрать оптимальный для себя агрегат. От того как устроен принцип охлаждения в холодильнике зависит не только качество хранения, но и длительность. На сегодняшний день системы охлаждения современных холодильников можно разделить на 3 группы: статическое охлаждение, охлаждение No Frost и динамическое охлаждение. Именно эти три группы и являются основой основ любого холодильного агрегата. Рассмотрим принцип работы каждой системы.

Какой холодильник лучше, статическое охлаждение

   Статическая система охлаждения

   Самой простой и надежной системой, проверенной временем, является статическое охлаждение. Его второе название, более запомнившееся покупателям — «плачущая стена». Еще эту систему называют «Direct Cool». Принцип работы этот системы очень прост. Когда работает компрессор, температура в холодильном отделении начинает понижаться за счет отбора тепла испарителем, который спрятан в задней стенке холодильника. Температура задней стенки очень низка и вся влага начинает скапливаться и замерзать на задней стенке холодильника. Когда температура понизилась до заданного пользователем значения, компрессор выключается и воздух в холодильной камере естественным путем начинает повышаться. Замерзшие капли влаги на стенке начинают оттаивать и стекать в специальное отверстие, откуда вся вода попадает в специальный контейнер, расположенный снаружи холодильника.

   Отсюда и появилось название «плачущая стена». Температура повышается до максимального значения заданным настройкам и компрессор снова включается и все повторяется снова и снова. Температура в морозильной камере всегда поддерживается отрицательной за счет конструкции утеплителя и площади испарителя. Многие путают и называют данную систему капельной системой. На самом же деле капельная система подразумевает систему размораживания, а не охлаждения. Замерзшая влага в виде капель оттаивает и капли стекают вниз — поэтому и капельная, она же «плачущая стена».

   Размораживание в холодильниках со статической системой охлаждения называют ручным. Под размораживанием понимают морозильную камеру, поскольку из-за постоянной отрицательной температуры, влага постоянно намерзает на стенках камеры. В холодильной камере размораживание происходит автоматически. На самом же деле, ручное размораживание современного холодильника, это не еженедельное размораживание старенького отечественного холодильника. По условиям производителей, размораживание холодильника необходимо производить 2 раза в год. Реально же процесс размораживания выполняется не чаще 1 раза за 7 месяцев, а то и в год.

   Недостатком такой системы охлаждения являются испорченные, за короткое время, продукты на верхних полках, поскольку система не обеспечивает равномерное охлаждение по всему объему камеры. Холодный воздух опускается вниз, а более теплый поднимается вверх что пагубно влияет на качество хранения продуктов. Интенсивность охлаждения в статических системах самая медленная. Если забить холодильник только купленными продуктами — он очень медленно и долго будет набирать нужную температуру. Достоинством статических систем является максимальное сохранение влаги продуктов. Если мы на полку кладем клубнику в тарелке, то достав ее мы получаем полноценный сочный вкус.

Какой холодильник лучше, охлаждение No Frost

   Система NoFrost

   Система охлаждения No Frost («без инея») весьма моложе статической, но достаточно популярна. Основной идеей такой системы стал холодильник, который не нужно размораживать, который может работать без разморозки все время пока не сломается. У такого принципа охлаждения есть свои достоинства и недостатки, но об этом позже.

   Принцип работы следующий — испаритель в таких холодильниках не спрятан, а «открыт» и воздух в камерах непосредственно контактирует с ним. В основу процесса охлаждения заложена принудительная циркуляция воздуха в камере через испаритель. Когда работает компрессор воздух специальным вентилятором «протягивается» через испаритель, который отбирает тепло и имеет достаточно низкую температуру. Вся влага, которая содержится в воздухе, мгновенно намерзает на самом испарителе. За счет этого и не возникает намерзания влаги на стенках холодильной и морозильной камерах. Когда компрессор перестает работать и достигнута нужная температура, влага на испарителе тает и выводится специальным дренажем наружу. Такой же процесс происходит и в морозильной камере. Таким образом мы имеем холодильник с чистыми стенками на камерах без всякого намерзшего льда. Компания Samsung и компания LG выпускают холодильники только с системой No Frost и являются одними из ведущих данное направление производителями.

   Вместе с системой No Frot очень часто применяется понятие многопоточной системы охлаждения Air Flow или Multi Air Flow. Отдельно как систему охлаждения ее рассматривать нельзя, поскольку это система циркуляции воздуха между полок, которая повышает эффективность охлаждения. Важно не путать эти понятия между собой.

   Достоинством систем No Frost является высокая эффективность охлаждения. Равномерный распределенный воздушный поток между полок образует единую температуру в любом уголке камеры, что положительно отражается на качестве хранения. С другой стороны продукты в таких холодильниках быстрее теряют свою влагу и в определенных случаях есть необходимость хранить продукты в контейнерах.

Какой холодильник лучше, динамическое охлаждение

   Динамическое охлаждение

   Динамическая система охлаждения по сути, является статической системой но с определенным усовершенствованием, которое заключается в наличии вентилятора в холодильной камере. Принцип работы совершенно идентичен со статическим охлаждением. Отличием является работа вентилятора, в задачу которого входит принудительная циркуляция воздуха по камере. Динамическое охлаждение, так же как и No Frost, решает проблему однородной температуры в камере циркуляцией воздуха. В результате мы имеем более менее сбалансированную температуру на разных уровнях в холодильной камере. Эта система сочетает в себе достоинства статической и No Frost систем, обеспечивая максимально комфортные условия для хранения продуктов. Такие холодильники не могут похвастаться эффективностью систем No Frost, но качество хранения выше.

   На сегодняшний день в холодильниках стали применять комбинации систем охлаждения из-за чего холодильник нельзя рассматривать как с одной конкретной системой. Например, концерн Electrolux выпускает холодильники с так называемой системой Frost Free, а в холодильниках Sharp это гибридная система охлаждения. На самом деле это комбинация статической или динамической системы в холодильной камере, и системы No Frost в морозильной. Подобное решение есть и у других производителей, поэтому важно не запутаться и понимать что Вам предлагают.

Так же читайте про индукционную плиту в нашей статье «Что такое индукционная плита? Описание принципа работы.«

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Ликбез по системам охлаждения

Занятие первое: процессорные кулеры

Со времени появления первых микропроцессоров прошло уже более 30 лет. Микроэлектронная технология успела далеко шагнуть за этот период, и если раньше компьютер был уделом только избранных, то теперь он стал неотъемлемой частью жизни каждого из нас. Но вместе с переходом компьютеров из категории роскоши в разряд, так сказать, средств передвижения, неминуемо образовалась масса серьезных проблем.

Ни для кого не секрет, что высокопроизводительные процессоры сильно нагреваются при работе, иными словами — рассеивают большую тепловую мощность. И без дополнительных средств охлаждения быстродействующее «кремниевое сердце» современного компьютера обойтись уже не может. Проблема обеспечения оптимальной рабочей температуры процессора в последние годы начинает проявлять себя в полный рост, становясь самым настоящим краеугольным камнем на пути к созданию надежной, эргономичной и высокопроизводительной компьютерной системы. Общепризнанным и наиболее распространенным средством охлаждения процессора являются на сегодня так называемые кулеры (или, говоря по научному — теплообменные аппараты принудительного воздушного охлаждения). В общем случае они являются сочетанием металлической оребренной пластины (радиатора) и воздушного насоса (вентилятора), и служат для поддержания рабочей температуры процессора в пределах допустимых нормативов, обеспечивая его правильное и надежн! ое функционирование. Что ж, давайте рассмотрим эти устройства поподробнее.

Радиаторы

По своей сути радиатор является устройством, существенно облегчающим теплообмен процессора с окружающей средой. Площадь поверхности процессорного кристалла чрезвычайно мала (на сегодня не превышает нескольких квадратных сантиметров) и недостаточна для сколько-нибудь эффективного отвода тепловой мощности, измеряемой десятками ватт. Благодаря своей оребренной поверхности, радиатор, будучи установленным на процессоре, в сотни и даже тысячи раз увеличивает площадь его теплового контакта с окружающей средой, способствуя тем самым усилению интенсивности теплообмена и кардинальному снижению рабочей температуры.

Фундаментальной технической характеристикой радиатора является термическое сопротивление относительно поверхности процессорного кристалла — величина, позволяющая оценить его эффективность в качестве охлаждающего устройства.

Термическое сопротивление выражается простым соотношением:

Rt = (Tc — Ta)/Ph, где

Rt — термическое сопротивление радиатора,
Tc — температура поверхности процессорного кристалла,
Ta — температура окружающей среды,
Ph — тепловая мощность, рассеиваемая процессором.

Измеряется термическое сопротивление соответственно в °С/Вт. Оно показывает, насколько увеличится температура процессорного кристалла относительно температуры в компьютерном корпусе при отводе определенной тепловой мощности через данный конкретный радиатор, установленный на процессоре.

Для примера возьмем платформу VIA Eden. Типичное термическое сопротивление процессорного радиатора составляет здесь 6°С/Вт, типичная тепловая мощность процессора равняется 3 Вт, а типичная температура внутри системного блока лежит в пределах 50°C. Перемножив значения термического сопротивления радиатора и тепловой мощности процессора, мы получим 18°C. Теперь мы знаем, что температура поверхности процессорного кристалла будет превышать температуру в системном блоке на 18°C и будет держаться соответственно на уровне 68°C. В принципе, такая температура вполне соответствует «медицинским» нормативам на процессоры VIA Eden ESP, и поводов для беспокойства за его здоровье у нас нет.

Теперь давайте посмотрим другой пример. Если нам вдруг вздумается использовать радиатор от VIA Eden ESP, но уже с процессором AMD Athlon XP, тепловая мощность которого составляет порядка 40–60 Вт, то результат будет плачевным: температура процессора достигнет 300°C и более, что привет к его скоропостижной кончине от «теплового удара». Совершенно очевидно, что при такой тепловой мощности нужен радиатор (или предпочтительно — уже полноценный кулер) с гораздо меньшим термическим сопротивлением, чтобы он смог удержать температуру процессора в пределах безопасных 75–90°C.

Таким образом, для термического сопротивления действует четкий принцип «чем меньше, тем намного лучше». Зная его величину, мы сможем легко оценить целесообразность применения того или иного радиатора (или процессорного кулера в целом, но об этом чуть позднее) в наших конкретных эксплуатационных условиях. И также легко сможем избежать ошибок, которые нередко приводят к катастрофическим последствиям для компьютерной системы и кошелька пользователя.

На практике термическое сопротивление (суть тепловая эффективность) радиатора во многом зависит не только от площади оребренной поверхности, но и от его конструктивных особенностей и технологии изготовления. В настоящее время на рынке представлены пять «архетипов» радиаторов, задействованных в массовом производстве. Позвольте уделить им немного вашего драгоценного внимания.

«Экструзионные» (прессованные) радиаторы. Наиболее дешевые, общепризнанные и самые распространенные на рынке, основной материал, используемый в их производстве — алюминий. Такие радиаторы изготавливаются методом экструзии (прессования), который позволяет получить достаточно сложный профиль оребренной поверхности и достичь хороших теплоотводящих свойств.

«Складчатые» радиаторы. Отличаются довольно интересным технологическим исполнением: на базовой пластине радиатора пайкой (или с помощью адгезионных теплопроводящих паст) закрепляется тонкая металлическая лента, свернутая в гармошку, складки которой играют роль своеобразной оребренной поверхности. Основные материалы — алюминий и медь. По сравнению с экструзионными радиаторами, данная технология позволяет получать изделия более компактных размеров, но с такой же тепловой эффективностью (или даже лучшей).

«Кованые» (холоднодеформированные) радиаторы. Для их изготовления используется технология холодного прессования, которая позволяет «ваять» поверхность радиатора не только в форме стандартных прямоугольных ребер, но и в виде стрежней произвольного сечения. Основной материал — алюминий, но зачастую в основание (подошву) радиатора дополнительно интегрируют медные пластины (для улучшения его теплоотводящих свойств). Технология холодного прессования характеризуется относительно малой производительностью, поэтому «кованые» радиаторы, как правило, дороже «экструзионных» и «складчатых», но далеко не всегда лучше в плане тепловой эффективности.

«Составные» радиаторы. Во многом повторяют методику «складчатых» радиаторов, но обладают вместе с тем весьма существенным отличием: здесь оребренная поверхность формируется уже не лентой-гармошкой, а раздельными тонкими пластинами, закрепленными на подошве радиатора пайкой или стыковой сваркой. Основной используемый материал — медь. Как правило, «составные» радиаторы характеризуются более высокой тепловой эффективностью, чем «экструзионные» и «складчатые», но это наблюдается только при условии жесткого контроля качества производственных процессов.

«Точеные» радиаторы. На сегодня это самые продвинутые и наиболее дорогие изделия. Они производятся прецизионной механической обработкой монолитных заготовок (обрабатываются на специализированных высокоточных станках с ЧПУ) и отличаются наилучшей тепловой эффективностью. Основные материалы — алюминий и медь. «Точеным» радиаторам вполне по силам вытеснить с рынка все остальные «архетипы», если себестоимость такой технологии будет снижена до приемлемых значений.

Итак, радиаторы мы рассмотрели, обратимся теперь к вентиляторам.

Вентиляторы

Как уже было отмечено, современные процессоры испытывают нужду в охлаждающих устройствах с как можно более низким термическим сопротивлением. На сегодня даже самые продвинутые радиаторы не справляются с этой задачей: в условиях естественной конвекции воздуха, т.е. когда скорость движения воздушных масс мала (типичный пример — марево над асфальтом дорожного полотна в жаркий летний день), «штатной» тепловой эффективности радиаторов оказывается недостаточно для поддержания приемлемой рабочей температуры процессора. Кардинально уменьшить термическое сопротивление радиатора можно только одним способом — хорошенько его вентилировать (говоря по-научному, создать условия вынужденной конвекции теплоносителя, то бишь воздуха). Как раз для этих целей практически каждый процессорный радиатор и оборудуется вентилятором, который добросовестно продувает его внутреннее межреберное пространство.

На сегодня в процессорных кулерах находят применение в основном осевые (аксиальные) вентиляторы, формирующие воздушный поток в направлении, параллельном оси вращения пропеллера (крыльчатки).

«Ходовая» часть вентилятора может быть построена на подшипнике скольжения (sleeve bearing, наиболее дешевая и недолговечная конструкция), на комбинированном подшипнике — один подшипник скольжения плюс один подшипник качения (one sleeve -one ball bearing, наиболее распространенная конструкция), и на двух подшипниках качения (two ball bearings, самая дорогая, но в то же время очень надежная и долговечная конструкция). Ну, а электрическая часть вентилятора повсеместно представляет собой миниатюрный электродвигатель постоянного тока.

Как же оценить, насколько хорош (или плох) тот или иной вентилятор? Каковы его технические характеристики и эксплуатационные параметры? Давайте посмотрим!

Во-первых, фундаментальной характеристикой любого вентилятора является его производительность (технический термин — «расход») — величина, показывающая объемную скорость воздушного потока. Выражается она в кубических футах в минуту (cubic feet per minute, CFM). Чем больше производительность вентилятора, тем он более эффективно продувает радиатор, уменьшая термическое сопротивление последнего. Типичные значения расхода — от 10 до 80 CFM.

Во-вторых, очень важной характеристикой вентилятора является скорость вращения крыльчатки (в отечественной практике выражается в об/мин, американская единица измерения — rotations per minute, RPM). Чем быстрее вращается крыльчатка, тем выше становится производительность вентилятора. Типичные значения скорости — от 1500 до 7000 об/мин.

Ну и, в-третьих, еще одна важная характеристика вентилятора — это его типоразмер. Как правило, чем больше габариты вентилятора, тем выше его производительность. Наиболее распространенные типоразмеры — 60х60х15 мм, 60х60х20 мм, 60х60х25 мм, 70х70х15 мм, 80х80х25 мм.

Что же касается эксплуатационных параметров, то наиболее существенными из них являются уровень шума и срок службы вентилятора.

Уровень шума вентилятора выражается в децибелах и показывает, насколько громким он будет в субъективном восприятии. Значения уровня шума вентиляторов лежат в диапазоне от 20 до 50 дБА. Человеком воспринимаются в качестве тихих только те вентиляторы, уровень шума которых не превышает 30-35 дБА.

Наконец, срок службы вентилятора выражается в тысячах часов и является объективным показателем его надежности и долговечности. На практике срок службы вентиляторов на подшипниках скольжения не превышает 10-15 тыс. часов, а на подшипниках качения — 40-50 тыс. часов.

Итак, на сегодня, пожалуй, все. В следующий раз мы вновь обратимся к вентиляторам, произведем их вскрытие и более подробно рассмотрим некоторые технические тонкости. Спасибо за внимание и до встречи!

www.ixbt.com


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта