Ключ к знанию

Фазоинвертор для сабвуфера


Фазоинвертор. Немного теории — DRIVE2

Понимание, доработка и настройка акустического оформления типа «Фазоинвертор».

Все просто! Не нужно иметь степень по физике, не нужно высшей математики, лишь логика и здравый смысл – ведь это все, что Вам нужно, чтобы получить достойный звук. В этом разделе постараемся разложить все «по полочкам», доступно и понятно описать работу и настройку корпуса типа «Фазоинвертор». Обладая знанием – исследуйте и творите свои уникальные системы!

Фазоинвертор — тип акустического оформления, объединяющий высокое качество звучания, внушительную громкость, простоту в построении и дальнейшей настройке, так же, ФИ сравнительно мал в плане вытесняемого в багажнике пространства.

Мы рекомендуем использовать оформление такого типа всем нашим пользователям в качестве первого корпуса, так же, мы тестируем и рекомендуем начальные, наиболее универсальные в реальной работе, параметры корпуса типа ФИ. Но, как всем Вам известно, из каждого правила есть исключения. И если рекомендованные нами решения удовлетворяют большинству Ваших требований, то всегда найдутся такие, кому нужно что то свое – это и участники различных соревнований, и любители «ветра», и любители «прокачивать площадки»… Эта статья посвящается как раз таким людям, построившим стандартный корпус и желающим получить больше – больше качества, или больше давления, или глубже бас, или…или…

Раздел 1. Вникаем…

Для начала давайте разберемся, как работает ФИ.

Если закрытый ящик(ЗЯ) попросту устраняет волны, созданные обратной стороной диффузора, то ФИ преобразует эти волны в "полезные", за счет чего происходит существенный рост эффективности и звукового давления. Несомненным плюсом ФИ, в сравнении с ЗЯ, является значительно более высокая эффективность и громкость, минус ФИ — высокий уровень групповых задержек, выраженный в "размытости" и более низкой точности баса.

Порт передает энергию в значительно более узком диапазоне, чем фронтальная часть диффузора. Потому изменения затрагивают лишь часть общего диапазона работы сабвуфера. Впрочем, для большинства значительный выигрыш в громкости или эффективной ширине диапазона куда более важен, чем не такой значительный проигрыш в качестве, от того ФИ — это, пожалуй, самый популярный корпус сегодня.

Схематическое изображение принципиальной конструкции корпуса ФИ изображено на рисунке ниже.

ФИ имеет 2 составляющие — объем(как передаточная среда) и порт(как дополнительный излучатель). Принцип работы оформления типа «фазоинвертор» — корпус инвертирует по фазе энергию обратной стороны диффузора и при помощи порта передает ее в среду, тем самым усиливая акустическую отдачу. Проще говоря, корпус делает из "отрицательных" волн "положительные", эти "положительные" волны и усиливают итоговую отдачу.

В случае с ФИ, мы настоятельно рекомендуем использование фильтра инфранизких частот.

Раздел 2. Углубляемся.

С принципом работы разобрались, теперь перейдем к практике.

Мы уже много лет проводим тестирование корпусов типа ФИ и за годы работы выявили наиболее востребованные параметры корпуса, которые удовлетворят большинство наших пользователей. Но если есть желание получить действительно что то особенное от баса — придется поработать и настроить ФИ индивидуально.

При правильном подключении, диффузор движется сначала вверх, создавая разряжение в корпусе, за тем вниз, создавая сжатие. И это нормально, но в частных случаях лучше работает в обратном порядке. Потому, первое что мы попробуем изменить – заставим диффузор перемещаться сначала вниз, затем вверх. Для этого достаточно лишь поменять полярность подключения динамика – «перепутаем» плюс с минусом, теперь диффузор сперва переместится вниз и это серьезно изменит звучание. Не путайте акустические клеммы с питанием, подключив питающие провода к усилителю не верно, Вы гарантированно его сожжете.

Размяли динамик, отслушали наш стандартный корпус, поигрались с настройками магнитолы и частотами срезов, покрутили эквалайзеры и прочие «улучшайзеры»… что то все равно не устраивает? Так перейдем к существу вопроса и изменим корпус так, чтобы устраивало все!

Настройка. Давайте сразу договоримся, во многих источниках под "настройкой" ФИ принято понимать некую единственную частоту. Мы якобы можем включить какую нибудь программу, в которую нужно внести какие то параметры и которая сразу же нам скажет и нарисует нужный ящик. Все это в корне не верно. Настройка — это осознанный и практический процесс, итогом которого является нужный результат, не зависимо от того, будет это качество звука или какое то сверх-естественное давление или особенно широкий диапазон.

Объем служит для того, чтобы изменить полярность обратной волны с "-" на "+", порт же является своего рода передатчиком энергии. Проще говоря, объем нужен тем больше, чем ниже и глубже нужен бас, порт же нужен строго определенный, тк от порта зависит то, на сколько и какая именно частота будет усилена. Еще проще говоря, объем устанавливает рамки рабочего диапазона, порт усиливает нужную часть диапазона или расширяет его вверх или вниз.

Далее рассмотрим то, как на практике происходит процесс настройки корпуса. И для начала определим основные параметры, которые мы сможем измерить, ощутить, услышать и изменить. Не будем углубляться в физику, оно и не нужно, будем размышлять проще…

Громкость – все знают что это такое, измеряется в Децибеллах (Дб). Громкость бывает пиковая (большинство соревнований SPL), измеряется максимальный результат на одной частоте, и усредненная (формат LoudGames) – измеряется ряд частот, среднее значение принимается за конечный результат. Разницу в 3Дб мы уже можем услышать, разница в 10Дб очень хорошо ощутима на слух любому.

Эффективность – этот параметр описывает то, сколько фактической громкости мы получаем с одинаковой подводимой мощности. Пример: имея 500Вт, менее эффективный корпус даст 110Дб в среднем, более эффективный – 120Дб. Нашей задачей является получить максимум эффективности на всех воспроизводимых частотах.

Диапазон воспроизводимых частот – применительно к сабвуферу это диапазон частот от 20 до 100Гц. В идеале сабвуфер должен воспроизводить все эти частоты и с одинаковой громкостью, но в реальности этого конечно нет, сабвуфер отрабатывает часть диапазона и имеет спад громкости ближе к граничным частотам своих возможностей. Наша задача – заставить сабвуфер фактически воспроизводить частоты от 20 до 100Гц, но современные автомобильные мидбасовые динамики способны работать в диапазоне уже от 70-80Гц, а многие и от 50-60Гц, что существенно облегчает задачу.

Групповое время задержек(ГВЗ) – измеряется в миллисекундах, и чем оно выше, тем менее «содержательным» наш бас будет. На практике большое ГВЗ выражается в явном «запаздывании» баса, в отсутствии множества деталей, в «обмякшем», не эмоциональном и «гудящем» басе. Почему «групповое время» — если задержка одинакова на каждой воспроизводимой частоте во всем слышимом диапазоне от 20 до 20000Гц, то бас будет идеален и точен не зависимо от того, на сколько велика эта задержка. Более того, наличие задержки естественно, и чем ниже частота, тем выше задержка. Но в реальности разница между временем задержки на разных частотах гораздо выше идеала и куда менее постоянно, и ввиду этой непостоянной разницы звук превращается в кашу – одна частота играет раньше, другая позже. Наша задача – снизить ГВЗ до естественного уровня.

Максимум эффективности в полном диапазоне воспроизводимых частот при минимуме ГВЗ – наш рецепт идеального корпуса. В реальности же, как обычно, все не так просто, выигрывая в одном, жертвуем чем то другим…

Имея корпус типа «Фазоинвертор», мы оперируем тремя взаимосвязанными переменными – объем, площадь порта и длина порта. Изменяя их, мы имеем возможность добиваться нужного результата по каждому из вышеперечисленных параметров. Разберемся, за что отвечает каждая из этих переменных и как изменения повлияют на параметры звучания, а так же, как повлияет изменение на здоровье нашего динамика и надежность системы в целом.

Объем. Увеличивая объем, мы увеличиваем эффективность, но увеличиваем и ГВЗ, перемещаем нижнюю границу диапазона вниз, но так же, вниз перемещаем и верхнюю границу. И наоборот.

Объемом мы задаем границы диапазона воспроизводимых частот. Все знают о том, что с понижением частоты растет длина волны, а это значит, что чем больше объем, тем больше будет время задержки тыловой волны и тем более эффективным будет преобразование тыловой волны с "-" на "+" на нижних частотах, но тем менее эффективным будет преобразование на верхних частотах.

С увеличением объема, увеличивается уровень и ГВЗ внизу и вверху, но если внизу диапазона увеличение ГВЗ воспринимается как естественное, то вверху это совсем не так. Изменения эффективности так же происходят, с увеличением объема растет эффективность внизу, но падает вверху.

Безусловно, объем оказывает влияние и на ГВЗ, и на эффективность, но это влияние не велико и находится вблизи естественных пределов. Главная задача объема — получение нужного эффективного диапазона воспроизводимых частот.

Динамик и объем связаны между собой. Чем больше используемый объем, тем эффективнее динамик должен быть. Простой пример: 8" динамик запускаем в объеме 150 литров, звука практически не будет, но 18" динамик в том же объеме легко даст полноценный бас. Все дело в том, что с увеличением линейного хода, или с увеличением размера, или с увеличением эффективности, или с увеличением сразу всех трех этих характеристик, динамик способен эффективно воздействовать на бОльшую массу воздуха.

В результате наших собственных тестов мы уже определили для вас наиболее эффективный объем для каждого нашего сабвуфера, иными словами, мы определили диапазон, в котором сабвуфер будет работать так, чтобы было возможно получить наиболее качественный звук благодаря отсутствию "провала" между мидбасом и сабвуфером, при этом мы измерили множество различных мидбасов в различных реальных условиях, определив, что нижняя воспроизводимого ими диапазона — 69-84Гц. Если Ваш мидбас реально и эффективно работает ниже обозначенных рамок, то мы рекомендуем увеличивать объем, в следствии чего сабвуфер будет работать ниже, а жертва верхней границей окажется безболезненной для системы.

С объемом разобрались, с его помощью задаем начальные границы диапазона, теперь рассмотрим по

www.drive2.ru

Простая методика настройки фазоинвертора — DRIVE2

«Колонкостроительством» я начал заниматься ещё в начале 80-х. Вначале это был просто «динамик в ящике», но затем, конечно, я принялся изучать влияния параметров ящика (и фазоинвертора) на звучание динамика.

Попав на этот автомобильный сайт, я увидел много «сабвуферостроителей», и был сильно поражён, что для подавляющего большинства это просто «динамик в ящике», и чем больше размер динамика и ящика, тем лучше. Да, в некоторой степени, для закрытого ящика это верно. Но никак не для фазоинвертора…

Фазоинвертор требует тщательной настройки. А что мы видим на практике? В качестве фазоинвертора люди монтируют канализационные трубы непонятной длины, делают «щелевые фазоинверторы» по образу: «по этим отличным размерам Петя делал», ставят при этом совсем другой динамик. Тот, кто не может сделать по нормальному – изготавливает закрытый ящик (и правильно делает!).

Конечно же, есть такие отличные программы для моделирования акустики, к примеру, JBL SpeakerShop. Но они потребуют от вас введения множества исходных параметров. И даже зная эти параметры, расхождение в реальности получится, просто большое (динамик окажется совсем другой, короб немного различается по размерам, наполнителя не знаем, сколько нужно, фазоинверторная труба немного другая и т.п.)

Есть простой метод для настройки фазоинвертора, при которой не потребуется знать правильные исходные данные для ваших динамиков, ящиков, а также не требуются сложные измерительные приборы или математические расчёты, а также не потребуются очень сложные измерительные приборы или же расчёты математические. Скажу проще, всё уже было давно продумано и проверено на практике!

Методика настройка фазоинвертора, даёт погрешность 5%. И существует более 30-ти лет. Я ей пользовался еще, будучи школьником.

Для начала, нужно разобраться, чем ящик с фазоинвертором отличается от закрытого ящика?

Каждый динамик, как механическая система, обладает собственной резонансной частотой. Выше этой частоты динамик звучит «довольно гладко», а вот ниже – уровень, создаваемого им звукового давления, падает. Причём падает со скоростью 12 дБ на октаву (т.е. в 4 раза на двукратное снижение частоты). За «нижнюю границу воспроизводимых частот» принято считать частоту, на которой уровень падает на 6 дБ (т.е. в 2 раза).

АЧХ динамика в открытом пространстве

Установив динамик в ящик, его резонансная частота немного повысится, из-за того, что к упругости подвеса самого диффузора добавится упругость сжимаемого в ящике воздуха. Подъём резонансной частоты неминуемо «потянет за собой» вверх и нижнюю границу воспроизводимых частот. Чем меньше объём воздуха в ящике, тем выше его упругость, и, следовательно, выше резонансная частота. Отсюда и возникает желание «сделать ящик побо-о-о-ольше».

Жёлтая линия – АЧХ динамика в закрытом ящике

Сделать ящик «побольше» в некоторой степени можно не увеличивая его физические размеры. Для этого ящик заполняют демпфирующим материалом, например, ватой. Не будем вдаваться в физику этого процесса, но по мере увеличения количества такого наполнителя, резонансная частота динамика в ящике понижается (увеличивается «эквивалентный объём» ящика). Если же наполнителя будет слишком много, то резонансная частота начинает повышаться снова.

Опустим влияние размеров ящика на другие параметры, такие как добротность. Оставим это опытным «колонкостроителям». В большинстве практических случаев, из-за ограниченного пространства, объём ящика получается довольно близкий к оптимальному (мы же не строим колонки размером со шкаф). И смысл статьи, не загружать вас сложными формулами и расчётами.

Отвлеклись. Ну, с закрытым ящиком теперь всё ясно, а что же даёт нам фазоинвертор? Фазоинвертор – это «труба» (не обязательно круглая, может быть и прямоугольного сечения и узкая щель) причём определённой длины, которая совместно с объёмом воздуха в ящике обладает собственным резонансом. На этом «втором резонансе» поднимается звуковая отдача колонки. Необходимо выбрать частоту резонанса немного ниже частоты резонанса динамика в ящике, т.е. в той области, где у динамика начинается спад звукового давления. Таким образом, там, где у динамика начинается спад, возникает подъём, который в какой-то степени этот спад компенсирует, расширяя нижнюю граничную частоту воспроизводимых частот.

Красная линия – АЧХ динамика в закрытом ящике с фазоинвертором

Кстати, ниже частоты резонанса фазоинвертора спад звукового давления будет круче, чем у закрытого ящика и составит 24 дБ на октаву.

Следовательно, фазоинвертор позволяет расширить диапазон воспроизводимых частот в сторону нижних частот. Так как же выбрать частоту резонанса фазоинвертора?

Если частота резонанса фазоинвертора будет выше оптимальной, т.е. она будет находиться близко к резонансной частоте динамика в ящике, то мы получим «перекомпенсацию» в виде выпячивающегося горба на частотной характеристике. Звучание станет бочкообразным. Если частоту выбрать чересчур низкую, то подъём уровня не будет чувствоваться, т.к. на низких частотах отдача динамика падает слишком сильно (недокомпенсировали).

Голубые линии – не оптимальная настройка фазоинвертора

Это очень тонкий момент – или фазоинвертор даст эффект, или не даст ничего, или, наоборот, испортит звучание! Частоту фазоинвертора необходимо выбирать очень точно! Но где взять эту точность в гаражно-домашней ситуации?

На самом деле, коэффициент соразмерности между частотой резонанса динамика в ящике и частотой резонанса фазоинвертора, в подавляющем большинстве реальных конструкций составляет 0,61 – 0,65, и если принять его равным 0,63, то погрешность составит не больше 5%.

Кому интересно почитать теорию рекомендую:
1. Виноградова Э.Л. «Конструирование громкоговорителей со сглаженными частотными характеристиками», Москва, изд. Энергия, 1978
2. «Ещё о расчёте и изготовлении громкоговорителя», ж. Радио, 1984, №10
3. «Настройка фазоинверторов», ж. Радио, 1986, №8

Теперь перенесём теорию на практику – так нам ближе.

Как же измерить резонансную частоту динамика в ящике? Как известно, на резонансной частоте, «модуль полного электрического сопротивления» (Impedance) звуковой катушки возрастает. Проще говоря – сопротивление возрастает. Если для постоянного тока оно составляет, к примеру, 4 Ома, то на резонансной частоте оно вырастет до 20 — 60 Ом. Как это измерить?

Для этого, последовательно с динамиком нужно включить резистор номиналом на порядок выше собственного сопротивления динамика. Нам подойдёт резистор номиналом 100 – 1000 Ом. Кстати, измеряя напряжение на этом резисторе, мы можем оценивать «модуль полного электрического сопротивления» звуковой катушки динамика. На частотах, где сопротивление динамика будет высокое – напряжение на резисторе будет наименьшим, и наоборот. Так, а чем измерить?

Измерение импеданса динамика

Абсолютные значения нам не важны, нам нужно лишь найти максимум сопротивления (минимум напряжения на резисторе), частоты сравнительно низкие, поэтому можно воспользоваться обычным тестером (мультиметром) в режиме измерения переменного напряжения. А где взять источник звуковых частот?

Конечно, в качестве источника лучше использовать генератор звуковых частот… Но оставим это профессионалам. Проще всего создать компакт-диск с записанными треками звуковых частот, созданный в какой-либо компьютерной программе, например, CoolEdit или Adobe Audition. Даже я, имея измерительные приборы дома, создал CD на 99 треков, по несколько секунд каждый, с рядом частот от 21 до 119 Гц, с шагом 1 Гц. Очень удобно! Переключаешь треки – меняешь частоту. Частота равна номеру трека + 20. Довольно просто!

Процесс измерения резонансной частоты динамика в ящике выглядит следующим образом: «затыкаете» отверстие фазоинвертора (куском фанеры и пластилином) включаете CD на воспроизведение, устанавливаете приемлемую громкость, и, не изменяя её, «прыгаете» по трекам и находите трек, на котором напряжение на резисторе будет минимально. Всё – теперь частота вам известна.

Кстати, параллельно, измеряя резонансную частоту динамика в ящике, вы можете подобрать оптимальное количество наполнителя для вашего ящика! Постепенно добавляя количество наполнителя, смотрите изменение резонансной частоты. Находите то оптимальное количество, при котором резонансная частота будет минимальная.

Зная значение «резонансной частоты динамика в ящике с заполнителем» легко найти оптимальную резонансную частоту фазоинвертора. Просто-напросто умножьте её на 0,63. К примеру, получили резонансную частоту динамика в ящике 62 Гц – следовательно, оптимальная частота резонанса фазоинвертора будет примерно 39 Гц.

Теперь «открываем» отверстие фазоинвертора, и, изменяя длину трубы (тоннеля) или её сечение, настраиваем фазоинвертор на требуемую частоту. Как это сделать?

Да с помощью того же резистора, тестера и CD! Только нужно не забывать, что на частоте резонанса фазоинвертора, наоборот, «модуль полного электрического сопротивления» катушки динамика падает до минимума. Поэтому, искать

www.drive2.ru

Сообщества › Автозвук › Блог › Эффективнее, чем фазоинвертор. Тест влагозащищённого корпусного сабвуфера с пассивным излучателем Kicker CWTB10

Вот чем мне нравится Kicker, так это своим нестандартным подходом. Пока все упёрлись и вагонами клепают сабвуферы в фазоинверторных корпусах, эти старички car audio просто вспоминают, что есть ещё и другие виды оформления. Пассивный излучатель (он же – passive radiator) имеет много общего с фазоинвертором, но лишён очень многих его недостатков. И ведь ничего нового, Гарри Олсон описал его принцип в своём патенте аж в 1935 году…

КОНСТРУКЦИЯ

Не стану забегать вперёд и первым делом "встречу по одёжке". Kicker CWTB10 очень компактен – длина корпуса не превышает 44 см. Внешний диаметр, соответственно, как у типовой "десяточки" – немногим меньше 28 см. В серии есть и 8-дюймовая модель, она ещё компактнее.

Полный размер

Особо отмечу, что сабвуфер позиционируется производителем как универсальный – его можно использовать не только в автомобиле, но и, скажем, в катерах, открытых внедорожниках или квадроциклах. Корпус выполнен из толстого ударопрочного пластика и полностью герметичен.

Для крепления сабвуфера предусмотрены отверстия с резьбой, а в комплекте идут несколько кронштейнов для горизонтального или вертикального монтажа.

Полный размер

Полный размер

Мне на тест досталась модель с номинальным импедансом 2 Ом, но вообще у Kicker CWTB10 есть и 4-омная версия. 2-омную лучше подключать к какому-нибудь басовому моноблоку, а вот 4-омную можно использовать и с многоканальными усилителями, подключая сабвуфер к паре каналов в мост.

Полный размер

Теперь, собственно, к акустическому оформлению – пассивному излучателю. Форма корпуса тут играет не самую важную роль, но в нашем случае он выполнен в виде трубы, на концах которой – по диффузору. Динамику на самом деле принадлежит только один из них. Второй точно такой же диффузор и на точно таком же подвесе – это и есть пассивный излучатель.

Полный размер

КАК РАБОТАЕТ ПАССИВНЫЙ ИЗЛУЧАТЕЛЬ?

Я не зря в самом начале упомянул, что пассивный излучатель имеет много общего с фазоинвертором. Для тех, кто не знает как работает фазоинвертор, коротко рассказываю.

Когда диффузор динамика ходит туда-сюда, он попеременно то сжимает, то разжимает воздух внутри корпуса. Соответственно, этот воздух будет попеременно стремиться то выйти наружу через порт, то засасываться через него обратно. Но фишка в том, что воздух внутри порта имеет определённую инертность, и к выходу из него все эти колебания будут "добираться" с некоторым запозданием.

На определённой частоте (именно она и называется частотой настройки порта) окажется так, что воздух на выходе из порта будет колебаться синхронно с самим диффузором. Т. е. излучения от диффузора и из порта будут складываться. Собственно, это и есть эффект акустического усиления.

Пассивный излучатель работает абсолютно по такому же принципу. Только вместо порта с воздушной массой внутри него тут работает просто диффузор на подвесе. По сути, пассивный излучатель – это точно такой же динамик, только без магнитной системы. И если настройку обычного фазоинверторного порта можно менять его пропорциями и размерами, то в пассивном излучателе настройка меняется массой диффузора и упругостью/вязкостью/жёсткостью его подвеса.

В ЧЁМ ПРЕИМУЩЕСТВА ПАССИВНОГО ИЗЛУЧАТЕЛЯ ПЕРЕД ОБЫЧНЫМ ФАЗОИНВЕРТОРНЫМ ПОРТОМ?

А вы посмотрите на размеры корпуса, и вопрос отпадёт сам собой. В случае с Kicker CWTB10 внутренний объём получается что-то около 27 литров. Если попробовать рассчитать обычный порт для такого корпуса (например, в JBL Speakershop или в BassPort), то программа выдаст для него ну очень неудобные размеры. Либо сечение будет слишком маленьким, либо длина невменяемой.

А у пассивного излучателя можно сделать хоть какую площадь и хоть какую настройку. Как думаете, получится сделать обычный порт такого же сечения с низкой настройкой? Вот и я о том же.

КАК ЭТО УСТРОЕНО ВНУТРИ?

Динамики крепятся через "лапы" защитного гриля. Чтобы добраться до винтов, нужно всего лишь снять с них заглушки.

Полный размер

Кстати, это вам не саморезы какие-нибудь, всё серьёзно – с вживлёнными в корпус закладными гайками.

Полный размер

Внутри корпус заполнен распушённым синтепоном. Если коротко, то он, во-первых, создаёт эффект "увеличения" внутреннего объёма, а во-вторых, в какой-то мере демпфирует колебания воздуха внутри него.

Полный размер

Сам динамик – без лишних этикеток и прочих украшательств. Хотя указанная на лицевой стороне серия Comp R намекает на его родство с отдельным сабвуферным динамиком Kicker 43CWR104. Скорее всего, это он и есть, только в упрощённом исполнении – без декоративных накладок и с более простыми терминалами подключения кабелей.

Полный размер

А вот то, что стоит с другой стороны корпуса. Снаружи выглядит как динамик, но внутри на динамик совсем не похож. Вернее, похож на динамик без мотора.

Полный размер

Там, где к диффузору обычно крепится катушка, закреплена металлическая шайба – она корректирует вес подвижной системы.

ИЗМЕРЕНИЯ

Для интереса снял импедансную кривую не только целиком для всего сабвуфера, но и отдельно для динамика. Судя по характеру кривых, пассивный излучатель настроен где-то около 35 Гц, что очень близко к Fs самого динамика.

Полный размер

Измеренные параметры динамика в сабвуфере Kicker CWTB10:
Fs (собственная резонансная частота) – 35 Гц
Vas (эквивалентный объем) – 19,5 л
Qms (механическая добротность) – 8,97
Qes (электрическая добротность) – 0,51
Qts (полная добротность) – 0,49
Mms (эффективная масса подвижной системы) – 159 г
BL (коэффициент электромеханической связи) – 11,1 Тл м
Re (сопротивление звуковой катушки постоянному току) – 1,8 Ом
dBspl (опорная чувствительность, 1м, 1Вт) – 84,2 дБ

Впрочем, параметры динамика это так, больше для интереса. Мы же имеем готовый сабвуфер, поэтому оценю его работу в сборе.

Для начала снимаю АЧХ излучения самого диффузора. Обратите внимание на провал как раз в зоне настройки пассивного излучателя – около 35 Гц:

Полный размер

Дело в том, что при работе сабвуфера на этой частоте пассивный излучатель входит в резонанс и сам начинает сжимать-разжимать воздух в корпусе, и для динамика воздух в корпусе как бы становится упруже. Что, в свою очередь, и ограничивает ход его диффузора.

Получается, сабвуфер на этих частотах почти не работает? Конечно же, нет, просто вблизи частоты настройки пассивного излучателя работает в основном не динамик, а сам излучатель:

Полный размер

И вот так они работают вместе:

Полный размер

Общую АЧХ показать, к сожалению, не могу, поскольку измерения на нижних частотах корректно делать лишь в ближнем поле (не вести же его из-за одного измерения в безэховую камеру МТУСИ). Но даже беглый анализ АЧХ динамика и пассивного излучателя даёт понять, что в салоне автомобиля сабвуфер должен работать очень вкусно. Что, собственно, и подтвердилось на практике.

ПРОБА В ДЕЛЕ И ВЫВОДЫ

Небольшой эксперимент в автомобиле показал, ч

www.drive2.ru

ТИПЫ КОРПУСОВ ДЛЯ САБВУФЕРА — DRIVE2

ТИП КОРПУСА САБВУФЕРА — ЗАКРЫТЫЙ ЯЩИК (ЗЯ)

Варианты установки сабвуферного динамика

закрытый ящик ЗЯЭто наиболее простой в изготовлении тип акустического оформления. Колебания в таком ящике находятся в закрытом объеме и в конечном итоге гасятся. Поскольку звуковая волна это энергия, то затухая она превращаются в тепло. И хотя количество этого тепла невелико — оно все же оказывает влияние на характеристики акустической системы.

Для предотвращения этого эффекта ЗЯ заполняют изнутри звукопоглощающим материалом (вата или синтепон), который, поглощая звук поглощает и тепло. Повышение температуры воздуха становится намного меньше и динамику "кажется" что позади него существенно больший объем, чем на самом деле. На практике таким способом удается добиться увеличения "акустического" объема ящика по сравнению с геометрическим на 15-20%.

закрытый ящик для сабвуфераПри всей простоте конструкции закрытого ящика, он обладает многими достоинствами. Во-первых, простота расчета. Здесь есть всего один параметр — объем. Во-вторых, существенно снижает вероятность перегрузки динамика и его механических повреждений. В-третьих, при грамотном выборе параметров сабвуферной головки и объема корпуса — закрытый ящик не имеет равных в области характеристик, определяющих субъективное восприятие басовых частот.

Если все так хорошо, зачем нужны остальные типы акустического оформления? Подвох один — КПД. У закрытого ящика он наименьший по сравнению с любым другим типом акустического оформления. Чем меньше сделать объем ящика, тем меньше будет его эффективность.
ТИП КОРПУСА САБВУФЕРА — ФАЗОИНВЕРТОР (ФИ)
фазоинвертор ФИВ фазоинверторе часть энергии, которая в закрытом ящике "ставится к стенке" используется в мирных целях. Для этого внутренний объем ящика сообщается с окружающим пространством тоннелем, заключающим в себе некоторую массу воздуха. Величина этой массы выбирается таким образом, чтобы, в сочетании с упругостью воздуха внутри ящика создать вторую колебательную систему, получающую энергию от тыльной стороны диффузора и излучающую ее куда нужно и в фазе в излучением диффузора. Такой эффект достигается в не очень широком диапазоне частот, но в его пределах к.п.д. существенно возрастает.

ФИ ящик для сабвуфераПомимо более высокого к.п.д. фазоинвертор обладает еще одним достоинством — наличие здоровенной прорехи в корпусе громкоговорителя может сдержать движение диффузора и вблизи частоты настройки значительно уменьшается амплитуда колебаний диффузора. В рабочем диапазоне фазоинвертор создает для динамика совершенно тепличные условия, причем точно на частоте настройки амплитуда колебаний минимальна, а большая часть звука излучается тоннелем. Допустимая подводимая мощность здесь максимальна, а искажения, вносимые динамиком — наоборот, минимальны.

Фазоинвертор капризен к выбору параметров и настройке, поскольку выбору, под конкретный динамик, подлежат три параметра: объем ящика, поперечное сечение и длина тоннеля. Тоннель часто делают так, чтобы можно было регулировать длину тоннеля, меняя частоту настройки.
ТИП КОРПУСА САБВУФЕРА — ПОЛОСОВОЙ ГРОМКОГОВОРИТЕЛЬ (BANDPASS)
полосовой громкоговоритель bandpassЕсли закрытый ящик и фазоинвертор — акустические фильтры верхних частот, то полосовой — объединяет в себе фильтры верхних и нижних частот. Простейший полосовой громкоговоритель — одинарный 4-го порядка. Он состоит из закрытого объема, т.н. задней камеры и второго, снабженного тоннелем, как у фазоинвертора (передняя камера). Динамик установлен в перегородке между камерами так, что обе стороны диффузора работают на полностью или частично замкнутые объемы — отсюда и термин "симметричная нагрузка".

Из традиционных конструкций, бандпасс — чемпион по эффективности. Эффективность прямо связана с шириной полосы пропускания. Частотная характеристика полосового громкоговорителя имеет вид колокола.

ящик бандпас для сабвуфера
Бандпасс — капризен в расчете и трудоемок в изготовлении. Поскольку динамик закопан внутри корпуса, приходится идти на ухищрения по сборке ящика, чтобы наличие съемной панели не нарушало жесткости и герметичности конструкции. Импульсные характеристики тоже не из лучших, в особенности при широкой полосе.

Чем же это компенсируется? Прежде всего — высочайшим к.п.д. Во-вторых — весь звук излучается через тоннель, а динамик полностью закрыт. При компоновке такого сабвуфера открываются немалые возможности для установки его в автомобиль. Достаточно найти небольшое местечко на стыке багажника и салона, где может разместиться жерло тоннеля — и путь мощнейшим басам открыт.

www.drive2.ru

Фазоинвертор для чего и из чего?

Ну как, нашли подсказку, на которую я намекал в прошлом выпуске? Там было насчёт «баса народа»…

Ладно, раз не нашли, сейчас помогу. Весной 2006 года мы с вами общими усилиями (один я бы не справился) пришли к очень благоприятному для себя заключению: при правильном выборе динамика и верном расчёте объёма закрытый ящик может обеспечить в салоне автомобиля абсолютно, незыблемо ровную АЧХ. Ровную и простирающуюся в область низких частот настолько, насколько немыслимо этого достичь в домашнем аудио, ни за какие деньги. Всё, что для этого надо сделать — устроить так, чтобы АЧХ сабвуфера в открытом пространстве начала спадать примерно (или точно) там же, где начинается подъём на волшебной кривой передаточной функции салона. Двигая этой частотой вверх или вниз по оси частот, мы можем получить некоторый подъём на АЧХ или, наоборот, пострадать от некоторого спада по отношению к средним частотам, но в одном можно быть уверенным: уровень звукового давления, создаваемый в салоне машины сабвуфером в закрытом ящике ниже 50 — 60 Гц, не начнёт падать до самых низких, инфразвуковых частот, да и там это произойдёт не из-за него, а из-за нежёсткости и негерметичности кузова. Это было весной, и это, можно считать, были хорошие новости.

Зимой, а точнее — в прошлом номере, мы с той же неумолимостью пришли к выводу: сабвуфер-фазоинвертор ни при каких реально возможных обстоятельствах такой благодати во всей полосе низких частот обеспечить не может. Фазоинвертор придумали чёрт знает когда нарочно для расширения полосы воспроизводимых частот вниз, а у нас, в машине, это не актуально в силу той же самой передаточной функции. Это вроде бы новость плохая.

Однако тут же на реальном примере мы убедились: полосу частот в машине фазоинвертор не расширит, зато способен существенно увеличить уровень звукового давления при одной и той же подведенной к сабвуферу мощности. Опять хорошая новость. Итого: две хорошие на одну плохую, счёт в нашу пользу. Но как же всё-таки быть с врождённой неравномерностью АЧХ фазоинвертора? Вот про это и была подсказка, которую вы не нашли.

Чтобы не искать: вот результаты обобщения десятков реально построенных и успешно работающих аудиосистем. Верхний график — чего хотят чемпионы, нижний — что предпочитает просто любитель музыки в автомобиле. Во избежание недоразумений подчеркнём: во всех случаях речь идёт о серьёзных, порой очень недешёвых системах

Кто далёк от народа?

Тогда же, погожей весной 2006 года, мы прошерстили данные рубрики «Системы» на предмет выяснения: какую басовую АЧХ желает иметь народ в своём автомобиле, потратившись на установку руками профессионалов. И выяснили: есть два довольно непохожих типа баса. Один можно наблюдать (вернее — слышать) в машинах, получивших самые высокие оценки на соревнованиях самого высокого уровня. Вот именно так: самые и на самых. В таких машинах басовая частотная характеристика очень напоминает АЧХ дорогой (или очень дорогой) домашней акустики. Обобщённо: ровный, с минимальными отклонениями от горизонтали «стол» до самого низа. Если же взять статистику по обычным, для повседневного использования, автомобилям, там кривая будет существенно другая: с довольно явственно прорисованным подъёмом на басах, максимум которого приходится на 40 Гц.

Почему чемпионы оказались дальше от народа, чем мы ожидали? Да нет, они — из наших, просто на соревнованиях машину слушают на месте и, кроме специальных случаев, при заглушенном двигателе. Это, по существу, воспроизведение домашних условий в салоне, отсюда и уже отмеченное сходство. Но стоит запустить двигатель и куда-нибудь отправиться (а, говорят, автомобиль для этого и предназначен), требования к басам резко меняются, уровень низкочастотного шума в салоне даже дорогого автомобиля неожиданно высок, но воспринимается ухом совсем не так, как шумы на средних частотах. Кажется, что в машине тихо, но почему-то басовые звуки музыкального сопровождения поездки как будто затихают — так наш слух адаптируется к постоянно действующей низкочастотной помехе. Басы надо поднимать, и в этом случае не так страшно, если подняты они окажутся не все сразу, а только до какой-то частоты, в реальных фонограммах содержание информации ниже 30 Гц крайне невелико.

Отсюда и столь любимая в народе форма басовой АЧХ. Отсюда же — крайняя полезность для автомобильной акустики замечательного изобретения, сделанного в первой трети прошлого века.

Упрощённые до прямолинейности графики происходящего в салоне машины, когда туда помещают сабвуфер. Верхний вы уже видели: это — результат идеально аудиофильской настройки сабвуфера типа ЗЯ. Его АЧХ «на свободе» начинает спадать именно там и именно с таким наклоном, с каким её поднимает передаточная функция салона. Итог — неколебимая прямая и призовой кубок.

Смотрите, что пришло

Вновь повторим иллюстрацию к одному из прошлых выпусков: название серии это не только допускает, но и требует. Вот схема, лежащая в основе «рецепта чемпионов». Предельно упрощённая, но все упрощения мы оговорим. Если согласиться с тем, что на нижней граничной частоте АЧХ сабвуфера в закрытом ящике резко, изломом, начинает катиться вниз, а на этой же частоте передаточная функция заворачивает вверх, то результирующая характеристика будет по-чемпионски горизонтальной. Вы правы, природа не терпит изломов, реально кривые будут загибаться плавно, одна вниз, другая — вверх, но при выполнении некоторых условий (которые мы обсуждали) результат будет таким же: ровная АЧХ до неслышимых границ. Теперь с такими же условностями нарисуем, что произойдёт, если вместо закрытого ящика мы построим фазоинвертор. Для большей ясности давайте сначала его построим плохо и неправильно. Это значит: запомнив из материалов про «простые числа», сулящие небесные характеристики ЗЯ (№4/2006 ), что резонансная частота динамика в этом виде оформления должна выбираться близкой к частоте перегиба кривой передаточной функции, настроим на эту частоту и вновь сооружаемый ФИ. Это на практике означает настройку герц эдак на 60 — 70. Что произойдёт? А ничего хорошего, АЧХ фазоинвертора, как уже говорилось, ниже частоты настройки падает вдвое быстрее, чем у закрытого ящика, 24 дБ/окт. вместо 12. Передаточная функция салона про это ничего не знает и по-прежнему обеспечивает подъём АЧХ в присущем ей темпе: 12 дБ/окт. Результатом станет «дефицит бюджета», ниже частоты настройки результирующая АЧХ пойдёт вниз с наклоном 12 дБ/окт. Зачем надо было вертеть дыру в ящике, чтобы такое получить? И верно, незачем, но мы ведь нарочно начали с плохого фазоинвертора, чтобы лучше вышел хороший.

Второй график — пример неуместного переноса этого же подхода на фазоинвертор. Его собственная АЧХ спадает ниже частоты настройки с наклоном уже 24 дБ/окт., передаточная функция наполовину скомпенсирует только крутизну спада, но он начнётся с той же недопустимо высокой частоты.

Выбросим сделанное ранее (слава богу, мысленно) и построим другой ФИ, у которого частота настройки существенно ниже частоты перегиба передаточной функции. Теперь происходит следующее: начиная с некоторой частоты передаточная функция салона начинает поднимать звуковое давление внутри, ведь АЧХ сабвуфера в свободном пространстве пока горизонтальна. Когда же частота (мы идём сверху вниз, разумеется) достигнет частоты настройки, АЧХ самого сабвуфера пойдёт вниз с наклоном 24 дБ/окт., на 12 дБ/окт. её «выправит» передаточная функция, итог — падение отдачи ниже частоты настройки, как у закрытого ящика в комнате.

А теперь посмотрите, что происходит между этими двумя частотами: пока не началось падение АЧХ, фазоинвертор успел набрать изрядный запас звукового давления. То, что в нашей упрощённой схеме выглядит эдаким домиком, на самом деле реализуется в виде плавных кривых, в общем случае похожих именно на форму АЧХ «народного баса». Остаётся самая малость — реализовать это на практике, где прямых и ломаных нету…

Идеализация реальной настройки ФИ: его звёздный час приходится на диапазон между точкой перегиба кривой передаточной функции и частотой настройки. Чем шире разнесены эти две частоты, тем больше простора для басового «домика».

Основной принцип, вытекающий вовсе не из науки, а из самой приземлённой практики, вы уже можете вывести сами. Если большинство населения делает (или принимает сделанную для них) АЧХ сабвуфера в виде горба с центральной частотой около 40 Гц, то зачем нам идти против народа? Исходя из приведенной схемы, самым первым, даже нулевым приближением рецепта оптимального автомобильного (только автомобильного) фазоинвертора будет настройка его на частоту 40 плюс-минус 5 Гц. На передаточную функцию мы никак повлиять не можем, она определит, где начинается подъём АЧХ. А её спад, а следовательно, и максимум придутся по нашей модели на частоту настройки ФИ. И всё? Вновь «простые числа»? Увы, нет. Совсем простых чисел для фазоинвертора не придумано. Но кое-что упростить всё же можно.

Свобода в степени

Действительно, был ящик, стал ящик с тоннелем, почему нельзя и в этом случае обойтись простыми рецептами? Дело в числе переменных, определяющих характеристики фазоинвертора как колебательной системы. Если в случае закрытого ящика мы имели дело с системой с одной степенью свободы, то у ФИ этих степеней две. Численно разница невелика, но для того, чтобы представить, насколько сложнее при этом становятся повадки системы, воспользуемся такой иллюстрацией, вам предстоит либо представить себе не раз виденные предметы в определённом сочетании, либо, если нет иного занятия, взять и в самом деле построить несложную экспериментальную установку. Первая её часть — банальный маятник, да хоть груз на верёвке. Всё, что он умеет — качаться туда-сюда, движения его предсказуемы до неинтересности. У маятника степень свободы — одна, его состояние в любой момент времени исчерпывающим образом определяется углом отклонения от положения равновесия. Теперь замените верёвку резинкой. Степеней свободы, то есть не зависящих друг от друга координат, определяющих состояние такой, с позволения сказать, системы, стало две: угол качания и степень растяжения резинки. Отклоните теперь такой маятник в сторону, одновременно растянув резинку. Если вы правда не видели, что после этого начнётся, не пожалейте времени и галантереи и проведите опыт: вместо банального раскачивания груз будет выделывать в воздухе трудноописуемые и нелегко прогнозируемые кульбиты.

Примерно в той же мере поведение ФИ отличается от предсказуемого ЗЯ. У динамика по-прежнему три параметра, один из которых, эквивалентный объём, сейчас менее важен, потому что определяет масштабный фактор, а не процесс колебаний, а два других, резонансная частота и добротность, по-прежнему важны. Но у акустического оформления параметров стало вдвое больше: объём ящика и частота настройки тоннеля. В каком соотношении эти четыре величины должны находиться, чтобы мы не оказались разочарованы результатами? Серьёзные исследования работы фазоинвертора породили не одну диссертацию и множество классических научных статей, но у нас задача иная, поэтому попытаемся дать практические ориентиры, не вдаваясь в подробности, почему они именно таковы.

Ведь смотрите: считать ФИ всё равно предстоит с помощью компьютерной программы, причём с вероятностью 99% это будет BassBox или (что то же самое) JBL Speaker Shop, эти некогда коммерческие продукты сейчас расползлись по миру в таком количестве, что не найти очередную копию себе сможет только очень ленивый. Но печка, от которой танцевать, даже при наличии испытанного софта, всё же нужна.

Общее правило: чем просторнее корпус ФИ, тем выше (но тем и острее) будет горб акустического усиления

В достаточно просторных корпусах, которые, будь они закрытыми, приводили бы к низким значениям полной добротности динамика в оформлении, пик отдачи ложится на частоту настройки

В корпусах тесных, в том числе — оптимальных в роли ЗЯ для данного динамика, АЧХ имеет максимум выше частоты настройки, при совсем заниженном объёме характеристика приобретает двугорбую форму, а выгода от использования ФИ сходит на нет

Неспортивное ориентирование

Итак, ориентир первый, уже относительно понятный из сравнения практической, «целевой» формы АЧХ, полученной обобщением практики, и упрощённой картинки, иллюстрирующей происходящее в салоне. Если мы хотим, чтобы на АЧХ возник подъём с максимумом в районе 40 Гц, на этой частоте и должен начаться спад АЧХ сабвуфера в свободном пространстве (в комнате или на улице — всё равно, важно, что не в салоне). Эта частота в первом приближении — частота настройки тоннеля. Та же практика демонстрирует со всей очевидностью: во всех удачных аудиосистемах, где используется сабвуфер в фазоинверторном оформлении, частота настройки приходится на диапазон 30 — 40 Гц. В этом же коридоре находятся обычно значения частоты настройки фазоинверторов, рекомендуемых для своих сабвуферов изготовителями. За исключением особых случаев спортивного применения, мы сейчас не об этом. Глядя на условно-упрощённую диаграмму, вы можете сообразить, что при прочих равных чем ниже будет частота настройки ФИ, тем выше успеет забраться АЧХ в салоне, прежде чем начнёт падать с тем же наклоном. Это вы можете увидеть и по фактическим материалам: загляните в какой-либо из наших тестов корпусных сабвуферов и сравните частоту настройки тоннеля (для тех, у кого он есть) с положением максимума звукового давления, зафиксированного при измерениях в салоне.

Однако положение горба по частоте — одно, а высота его — другое. Как добиться желаемого плавного подъёма басов в разумно широкой полосе частот, чтобы АЧХ не стояла домиком, как одеяло у первогодка? Свои ориентиры есть и для этого. Общее правило: при прочих равных (мы всё время делаем эту оговорку, и понятно почему — из-за возросшего числа переменных) подъём АЧХ вблизи частоты настройки будет тем выше и острее, чем больше объём ящика ФИ. Как выбрать первое приближение объёма? Есть простой (наконец-то) рецепт, за которым, правда, стоят далеко не простые умозаключения классиков современной электроакустики. Возьмите такой объём, который, если бы он был закрытым ящиком, дал бы значение полной добротности головки в оформлении, равное примерно 0,55 — 0,6. Именно в силу этого оптимальный объём ФИ в подавляющем большинстве случаев больше, чем оптимальный ЗЯ для этого же динамика, ведь ЗЯ рассчитывается исходя из результирующей добротности 0,7, а то и выше.

При таком объёме (а здесь играет роль, разумеется, не столько абсолютное значение объёма, сколько его отношение к величине эквивалентного объёма динамика Vas) можно рассчитывать на корректную работу получившегося акустического оформления во-первых и на то, что максимум отдачи будет находиться вблизи частоты настройки — во вторых. Нужен более высокий, пусть и более «домиком», подъём АЧХ — увеличивайте объём. Нужен подъём ниже, но более плавный и в более широкой полосе частот — уменьшайте объём, только заранее будьте готовы к двум вещам: вместе со сглаживанием максимума он с уменьшением объёма будет стремиться переехать выше по частоте, и уже не будет строго соответствовать частоте настройки порта, а когда объём достигнет значения оптимального для этого динамика закрытого ящика, с очень большой вероятностью АЧХ приобретёт довольно неуклюжую седловидную форму, при этом акустическое усиление, тот самый горб, который мы пытаемся построить, в большинстве случаев сойдёт на нет.

Впрочем, прежде чем начать опыты с подбором (а по-другому не получается, с одного клика ФИ рассчитать не удавалось ещё никому) объёма и настройки, надо определиться с динамиком. Здесь нам будет необходимо, увы, разрушить одно заблуждение.

Вновь на арене EBP

Мы уже говорили об этой величине, сокращённое имя которой расшифровывается как Energy Bandwidth Product. Этой величиной, численно равной отношению частоты резонанса динамика к его полной добротности, мы уже пользовались при выборе динамика для ЗЯ. Но задолго до нас, уже который год ею призывают пользоваться для сортировки динамиков на предназначенные для закрытых ящиков и просящиеся в фазоинвертор. Принято считать, что, если эта величина меньше 50, динамик предназначен только для ЗЯ. Если больше 100 — только для ФИ, между этими двумя значениями простирается некая сумеречная зона, где может оказаться и так и эдак.

Опыт показывает относительную малую полезность этого показателя для подбора оформления автомобильных сабвуферов, хотя идея в принципе здравая. Малая EBP означает: резонансная частота низкая, добротность относительно высокая, что свидетельствует о тяжёлой подвижной системе, а по канону такой динамик, действительно, идёт в ЗЯ. Большое значение EBP говорит о лёгкой «подвижке», на таких головках, действительно, получаются отличные фазоинверторы, но… дома.

У нас, во-первых, огромное, подавляющее число сабвуферных головок имеют значение параметра EBP в диапазоне 50 — 80, что для пессимиста означает неопределённость, а для оптимиста — свободу выбора. Во-вторых, и это уже из практики, не получаются в машине хорошие ФИ на динамиках с канонически хорошими для этого показаниями. Фазоинвертор на динамике с малой добротностью (а так и оказывается, если EBP переваливает за сотню) в свободном пространстве покажет ровную АЧХ со своеобразным, возможно, поведением вблизи нижней граничной частоты, в машине это своеобразие сложится с передаточной функцией и породит, почти без исключений, довольно уродливую характеристику.

Вклад в относительное развенчание «энергетического продукта» внесли и наши испытатели, проведя исследование на реальных образцах сабвуферных головок. Результат был таков: при значении EBP около 50 (по канону — в ЗЯ, и без разговоров) есть шанс получить очень неплохое акустическое усиление в ФИ с сохранением пристойной формы АЧХ, при 90 (по канону уже просится в ФИ) выигрыш в отдаче падает ниже 3 дБ, зачем, спрашивается, париться? Так что для нашего брата получается всё почти наоборот: наиболее эффективные ФИ выходят на базе наиболее «ящичных» головок. Так уж у нас всё устроено…


www.xn--80aeatqv1al.xn--p1ai

трансмиссионные линии (TQWT, ALT) / Pult.ru corporate blog / Habr

Сегодня самым популярным акустическим оформлением как домашних, так и студийных АС заслуженно считается фазоинверторное. Применение фазоинвертора — это простой и недорогой способ получить достаточное количество низких частот без использования большой площади излучающей поверхности динамиков и шкафоподобных корпусов. Однако, как и другие рациональные решения в электроакустике, применение фазоинверторов имеет недостатки. И недостатки критично сказываются на верности воспроизведения. Среди самых вредных недостатков этих АС можно выделить бубнение, турбулентное гудение, резонансное дребезжание, уханье и прочие “злокачественные” особенности ФИ-звучания.
От всего вышеописанного хочется избавиться. Сложно найти меломана, который хотя бы раз не ругал фазоинверторную акустику и не искал альтернативу. С последней всё не так просто. Среди возможных вариантов относительное распространение получила лабиринтная акустика. Проблема лабиринтов в том, что они не технологичны и требуют высокой культуры производства, что закономерно отражается на стоимости. Относительно бюджетный вариант лабиринта — трансмиссионная линия, она позволяет добиться плавной АЧХ, при этом сохранить высокое звуковое давление в НЧ диапазоне, но менее требовательна к расчетам, производственным затратам и конструктивно проще классической лабиринтной акустики. Под катом речь о её истории, особенностях и современном применении.

Общие сведения


Трансмиссионная линия представляет собой полый волновод переменного или постоянного сечения. Один конец волновода закрыт, второй открыт. Динамический излучатель размещается со стороны закрытого конца. Труба, как правило, свернута и качественно задемпфирована. Суть в том, чтобы уменьшить амплитуду колебаний диффузора динамического излучателя в области наиболее низких частот вблизи резонансной частоты трубы и при этом компенсировать уменьшение отдачи от динамика собственными колебаниями трансмиссионной линии в основной, наиболее низкочастотной моде.

В подавляющем большинстве случаев этого можно добиться, когда длина трансляционной линии совпадает с четвертью длины колебаний на частоте собственного резонанса динамика. Гапоненко в своей книге “Акустические системы своими руками” описывает это следующей формулой:


Где L — т.н. “акустическая” длина, которая превышает реальную геометрическую длину линии на величину:
где S — площадь поперечного сечения трансляционной линии.

Иными словами, необходимо настроить корпус на резонансную частоту, при которой воздух на выходе из волновода будет двигаться синфазно с колебаниями диффузора. Правильно спроектированная трансмиссионная линия характеризуется высокой точностью в НЧ диапазоне при сохранении достаточно мощных, акцентированных басов.


Суть в том, что спроектировать ТЛ легче, чем другие типы лабиринтного оформления, при этом типичных фазоинверторных проблем не будет. Характерные гундосые и турбулентные призвуки не характерны для такой акустики. Главным достоинством таких АС является верность воспроизведения в НЧ диапазоне, при этом с сохранением достаточно небольших габаритов.

“Обратной стороной” трансляционной линии, как и у конструктивно родственных лабиринтов, является критичность к верному расчету. Значительные ошибки при расчетах существенно отразятся на звуке, проявятся ненужные дребезжащие резонансы, либо внушительная неравномерность АЧХ. Радует здесь то, что рассчитать её проще, чем более сложные типы лабиринтов.

Хорошо забытая труба Войта


Самое раннее упоминание об использовании трансмиссионной линии, которое мне удалось обнаружить — это опыт Пола Войта. Этого пионера электроакустики мир предпочел забыть знает, как отца электродинамического излучателя. В 1930-м Войт разработал, запатентовал и даже пустил в ограниченную серию акустические системы с трансмиссионной линией оригинальной конструкции.
Paul Voigt

Дело в том, что в то время Войт разрабатывал АС для кинотеатров, которые традиционно для того времени оформлялись в рупоры. Затем он переключился на радиоприёмники и домашнюю акустику, где применяемый им широкополосный двухдиффузорный динамик с механическим кроссовером не отличался мощным низом. Это вызвало необходимость в поиске нового акустического оформления более подходящего для подобных АС.

Начав разработку, он экспериментировал и в определенный момент решил установить динамик в не очень традиционном месте, т.е. не в начале конусовидного рупора, а на одной из его сторон. В такой конструкции порт используется для регулировки заднего потока. Сама регулировка осуществляется увеличением, либо уменьшением количества демпфирующего материала в зависимости от типа используемого драйвера. Резонансная частота зависит от длины волновода, а также положения динамика.


Современный вариант TQWT

Трансмиссионная линия, названная позже трубой Войта — в разрезе очень напоминает классический рупор, снабженный дополнительными стенками. Сам Войт назвал динамик TQWT (Tapered Quarter Wave Tube) — конической четвертьволновой трубой. Такое название корпус получила по той причине, что как и во всех других классических типах ТЛ, для первой моды в трубе умещается четверть длины волны, для второй три четверти, для третьей пять и т.д.


Относительным недостатком такой конструкции является невозможность выбрать низкую частоту среза, так как в этом случае можно получить выражение искажения на НЧ. В остальном оформление позволяет создать сравнительно компактную напольную акустику с “ровными” НЧ, близкую по характеристикам к более сложным лабиринтам.

TQWT — практически не применяется в массовой акустике, но очень часто используется радиолюбителями при создании собственных АС. Проблема в том, что полноценной, развитой теории, описывающей акустические процессы TQWT-систем, пока нет, чего нельзя сказать о хорошо описанных фазоинверторах.

ATL — трансмиссионная линия в полочниках


Когда упоминаются трансмиссионные линии, как правило речь идёт о напольных системах. Считается, что формфактор и объем полочников требуют максимально компактных решений, коим является фазоинвертор. Однако есть компания, которая нашла сравнительное эффективное конструкторское решение по трансмиссионной линии в полочниках. Основатели и разработчики из PMC являются принципиальными противниками ФИ-акустики и убеждены, что будущее за их инновацией. PMC одна из немногих современных компаний, которые специализируются на АС с трансмиссионной линией.

За десятилетия существования компания разработала десятки моделей для студийных и домашних АС с трансмиссионной линией, некоторые из которых существуют до сих пор. До 2000-х годов они производили преимущественно напольные системы, так как классическая ТЛ зачастую предполагала именно такой формфактор.


Позже инженеры несколько усложнили конструкцию и создали т.н. «трансмиссионную линию последнего поколения» или ATL (Advanced Transmission Line). Особенность такой конструкции в дополнительных элементах, позволяющих получить достоинства ТЛ в полочниках.
Относительный минус этой конструкции в том, что по сложности и технологичности ATL близка к прочей лабиринтной акустике, что гарантированно увеличивает стоимость. Радует лишь то, что один из руководителей PMC Питер Томас считает, что:
”мы действительно верим в то, что с повышением цены должно расти и качество… наши покупатели далеко не дураки.” (из интервью Саше Метсону в 2010 году)."

Итог и несколько слов в защиту ФИ


Несмотря на ощутимые минусы фазоинверторной акустики, физика её работы хорошо описана, и большинство акустических эффектов предсказуемы. Это безусловно позволяет получить прогнозируемый результат, что очень важно при массовом производстве. Ряд компаний освоили трансляционные линии, однако она остается менее технологичной и более дорогой.

Возможно, в определенный момент трансмиссионные линии станут достаточно доступными и массовыми, но это произойдет не раньше момента, когда будут теоретически описаны основные процессы, происходящие в трансмиссионной линии. Если говорить о массовых и недорогих (до $500) АС найти что-то кроме ФИ и колонок с пассивным излучателем будет крайне сложно.

Тем, кому надоели проблемы фазоинверторных АС, при этом эстетика или габариты помещений не позволяют применять закрытый ящик, пожалуй, стоит задуматься над приобретением или созданием собственной трансмиссионной линии. Я буду признателен за любые мнения относительно трансляционной линии, особенно интересны люди, которым доводилось самостоятельно создавать такие АС.

Традиционная реклама
Мы продаём акустические системы, в нашем каталоге представлены как традиционная акустическа с ФИ, так и АС с другими типами акустического оформления, в том числе с трансляционной линией.

habr.com

anikolaev › Блог › Эффективнее, чем фазоинвертор. Тест влагозащищённого корпусного сабвуфера с пассивным излучателем Kicker CWTB10

Вот чем мне нравится Kicker, так это своим нестандартным подходом. Пока все упёрлись и вагонами клепают сабвуферы в фазоинверторных корпусах, эти старички car audio просто вспоминают, что есть ещё и другие виды оформления. Пассивный излучатель (он же – passive radiator) имеет много общего с фазоинвертором, но лишён очень многих его недостатков. И ведь ничего нового, Гарри Олсон описал его принцип в своём патенте аж в 1935 году…

КОНСТРУКЦИЯ

Не стану забегать вперёд и первым делом "встречу по одёжке". Kicker CWTB10 очень компактен – длина корпуса не превышает 44 см. Внешний диаметр, соответственно, как у типовой "десяточки" – немногим меньше 28 см. В серии есть и 8-дюймовая модель, она ещё компактнее.

Полный размер

Особо отмечу, что сабвуфер позиционируется производителем как универсальный – его можно использовать не только в автомобиле, но и, скажем, в катерах, открытых внедорожниках или квадроциклах. Корпус выполнен из толстого ударопрочного пластика и полностью герметичен.

Для крепления сабвуфера предусмотрены отверстия с резьбой, а в комплекте идут несколько кронштейнов для горизонтального или вертикального монтажа.

Полный размер

Полный размер

Мне на тест досталась модель с номинальным импедансом 2 Ом, но вообще у Kicker CWTB10 есть и 4-омная версия. 2-омную лучше подключать к какому-нибудь басовому моноблоку, а вот 4-омную можно использовать и с многоканальными усилителями, подключая сабвуфер к паре каналов в мост.

Полный размер

Теперь, собственно, к акустическому оформлению – пассивному излучателю. Форма корпуса тут играет не самую важную роль, но в нашем случае он выполнен в виде трубы, на концах которой – по диффузору. Динамику на самом деле принадлежит только один из них. Второй точно такой же диффузор и на точно таком же подвесе – это и есть пассивный излучатель.

Полный размер

КАК РАБОТАЕТ ПАССИВНЫЙ ИЗЛУЧАТЕЛЬ?

Я не зря в самом начале упомянул, что пассивный излучатель имеет много общего с фазоинвертором. Для тех, кто не знает как работает фазоинвертор, коротко рассказываю.

Когда диффузор динамика ходит туда-сюда, он попеременно то сжимает, то разжимает воздух внутри корпуса. Соответственно, этот воздух будет попеременно стремиться то выйти наружу через порт, то засасываться через него обратно. Но фишка в том, что воздух внутри порта имеет определённую инертность, и к выходу из него все эти колебания будут "добираться" с некоторым запозданием.

На определённой частоте (именно она и называется частотой настройки порта) окажется так, что воздух на выходе из порта будет колебаться синхронно с самим диффузором. Т. е. излучения от диффузора и из порта будут складываться. Собственно, это и есть эффект акустического усиления.

Пассивный излучатель работает абсолютно по такому же принципу. Только вместо порта с воздушной массой внутри него тут работает просто диффузор на подвесе. По сути, пассивный излучатель – это точно такой же динамик, только без магнитной системы. И если настройку обычного фазоинверторного порта можно менять его пропорциями и размерами, то в пассивном излучателе настройка меняется массой диффузора и упругостью/вязкостью/жёсткостью его подвеса.

В ЧЁМ ПРЕИМУЩЕСТВА ПАССИВНОГО ИЗЛУЧАТЕЛЯ ПЕРЕД ОБЫЧНЫМ ФАЗОИНВЕРТОРНЫМ ПОРТОМ?

А вы посмотрите на размеры корпуса, и вопрос отпадёт сам собой. В случае с Kicker CWTB10 внутренний объём получается что-то около 27 литров. Если попробовать рассчитать обычный порт для такого корпуса (например, в JBL Speakershop или в BassPort), то программа выдаст для него ну очень неудобные размеры. Либо сечение будет слишком маленьким, либо длина невменяемой.

А у пассивного излучателя можно сделать хоть какую площадь и хоть какую настройку. Как думаете, получится сделать обычный порт такого же сечения с низкой настройкой? Вот и я о том же.

КАК ЭТО УСТРОЕНО ВНУТРИ?

Динамики крепятся через "лапы" защитного гриля. Чтобы добраться до винтов, нужно всего лишь снять с них заглушки.

Полный размер

Кстати, это вам не саморезы какие-нибудь, всё серьёзно – с вживлёнными в корпус закладными гайками.

Полный размер

Внутри корпус заполнен распушённым синтепоном. Если коротко, то он, во-первых, создаёт эффект "увеличения" внутреннего объёма, а во-вторых, в какой-то мере демпфирует колебания воздуха внутри него.

Полный размер

Сам динамик – без лишних этикеток и прочих украшательств. Хотя указанная на лицевой стороне серия Comp R намекает на его родство с отдельным сабвуферным динамиком Kicker 43CWR104. Скорее всего, это он и есть, только в упрощённом исполнении – без декоративных накладок и с более простыми терминалами подключения кабелей.

Полный размер

А вот то, что стоит с другой стороны корпуса. Снаружи выглядит как динамик, но внутри на динамик совсем не похож. Вернее, похож на динамик без мотора.

Полный размер

Там, где к диффузору обычно крепится катушка, закреплена металлическая шайба – она корректирует вес подвижной системы.

ИЗМЕРЕНИЯ

Для интереса снял импедансную кривую не только целиком для всего сабвуфера, но и отдельно для динамика. Судя по характеру кривых, пассивный излучатель настроен где-то около 35 Гц, что очень близко к Fs самого динамика.

Полный размер

Измеренные параметры динамика в сабвуфере Kicker CWTB10:
Fs (собственная резонансная частота) – 35 Гц
Vas (эквивалентный объем) – 19,5 л
Qms (механическая добротность) – 8,97
Qes (электрическая добротность) – 0,51
Qts (полная добротность) – 0,49
Mms (эффективная масса подвижной системы) – 159 г
BL (коэффициент электромеханической связи) – 11,1 Тл м
Re (сопротивление звуковой катушки постоянному току) – 1,8 Ом
dBspl (опорная чувствительность, 1м, 1Вт) – 84,2 дБ

Впрочем, параметры динамика это так, больше для интереса. Мы же имеем готовый сабвуфер, поэтому оценю его работу в сборе.

Для начала снимаю АЧХ излучения самого диффузора. Обратите внимание на провал как раз в зоне настройки пассивного излучателя – около 35 Гц:

Полный размер

Дело в том, что при работе сабвуфера на этой частоте пассивный излучатель входит в резонанс и сам начинает сжимать-разжимать воздух в корпусе, и для динамика воздух в корпусе как бы становится упруже. Что, в свою очередь, и ограничивает ход его диффузора.

Получается, сабвуфер на этих частотах почти не работает? Конечно же, нет, просто вблизи частоты настройки пассивного излучателя работает в основном не динамик, а сам излучатель:

www.drive2.ru

Mercedes Vito SoundEdition › Бортжурнал › Как рассчитать ФИ(фазоинвертор).Пособие для новичков 2

Приветствую всех, кто читает эту статью.По просьбам некоторых товарищей продолжаю тему с расчетами.Раз сказал, что напишу, то делаю)До сего момента не было времени да и порой желания писать.Но это всё небольшое отступление.Перейдем непосредственно к расчетам.Итак, начнем.
Повторюсь, В ПРОГРАММЕ МЫ РАССЧИТЫВАЕМ ЧИСТЫЙ ОБЪЕМ КОРПУСА, А ЭТО ЗНАЧИТ БЕЗ УЧЕТА ОБЪЕМА САМОГО ДИНАМИКА, ТО ЕСТЬ К ОБЪЕМУ КОТОРЫЙ МЫ ПОЛУЧИМ В ПРОГРАММЕ НУЖНО ПРИБАВИТЬ И ОБЪЕМ САМОГО ДИНА.
Нам нужны:
1)Прога JBL SpeakerShop
,опять повторюсь, что может наблюдаться некорректная работа программы на ОС, таких как Vista и 7
2)Основные характеристики дина, а именно Vas, Fs и Qts(если есть и другие, то конечно же вводим и их)
В первую очередь нужно поставить галочку около значка "автомобиль", с этого момента мы начинаем учитывать передаточную функцию салона, короче говоря, мы строим ящик для авто.

Далее нажимаем в верхней строке кнопку File затем New Design и получаем это окошко

Здесь и вводим все параметры, которые есть для нашего динамика.Основные три я подчеркнул.
Вводим, в моем случае это дин Ural as-d12.3

После ввода параметров нажимаем Accept
Видим следующее.


Нас интересует область, выделенная красным, это область ФИ
Программа выдает нам параметры Optimum, внизу этого столбца есть кнопка Plot, нажимаем ее.
Получаем график АЧХ, здесь не все так просто с "идеальным" АЧХ, как я писал в ЗЯ, тут зависит от Ваших предпочтений и желаний, для SPL на АЧХ характерен горб на определенной частоте, для более меломанского короба, нужно стараться выровнять АЧХ и тем самым убрать этот страшный и ненужный порой горб, и сделать короб более универсальным.Но следует учесть, что и настройку короба программа в оптимальном варианте считает сама, а это нам не нужно.

Такой график получился в моем случае
Если график, который у Вас получился устраивает, то далее переходим к расчету порта.Порт высчитывается так:Sp = (0.7 x Sd x Xmax x F) /1000
Sp — площадь порта, кв.см
Sd — площадь диффузора, кв.см
Xmax — максимальный ход диффузора в одну сторону, мм
F — частота настройки порта
Если нет, то продолжаем дальше.Нажимаем на Сustom и видим это окошко


Красным выделено поле, в котором уточняется, будете ли Вы заполнять короб материалом, и 4 варианта-нет, минимальное заполнение, среднее и максимальное.
Желтое поле-объем корпуса, который мы можем менять
Синее-частота настройки, здесь мы и выбираем желаемую настройку короба
Зеленое-нижний диапазон частот, с которого короб начнет отыгрывать, зависит от частоты настройки короба

Сделаем короб, близкий к универсальному с настройкой в 38 Гц, методом проб и ошибок строим нужный нам график АЧХ, объем при этом у меня вышел 45 литров
Сверху обведены данные короба который мы строим, т.е. его объем 45 литров ЧИСТЫМИ, частота настройки, и частота с которой короб начнет играть без потерь.В нашем случае короб начнет играть от 33 и до 54-55Гц, вполне универсально.
Далее переходим к постройке порта.Жмем сверху Bоx затем Vent
Получаем окошко.
Нас интересует область, выделенная желтым, то есть область Custom.Синим отмечено количество портов.Так как есть 2 варианта ФИ щель и труба, то программа предоставляет нам право выбора.Если мы используем трубу, то нам нужно поставить галочку в зеленом квадрате, этим мы выбираем порт представленный трубой.
С нее и начнем.

Я выбрал 1 порт, значит ставлю цифру 1 в поле, обведенное желтым, затем ставлю галочку на Diameter, этим я выбрал трубу, и в поле, обведенное синим, ввожу диаметр трубы в сантиметрах, возьмем 10см говнотрубу.
И программа автоматически выдает мне длину трубы на 29 см.
Для ФИ с трубой вроде всё и готово.Думаю объем сможете высчитать, т.к. это формулы еще со школы.КСТАТИ, ОБЪЕМ ПОРТА ТОЖЕ НУЖНО УЧИТЫВАТЬ ПРИ ПОСТРОЕНИИ, ТО ЕСТЬ В НАШЕМ СЛУЧАЕ К 45 ЛИТРАМ ПРИБАВЛЯЕМ 4 ЛИТРА ОБЪЕМА ДИНАМИКА И ПЛЮС 2.3 ЛИТРА ОБЪЕМ ПОРТА.ИТОГО 51.3 ЛИТРА.А ТАМ УЖ ПОДГОНЯЙТЕ ПОД СВОЙ БАГАЖНИК И ДИАМЕТР ДИНА.

Теперь разберемся с щелевым портом.
Здесь я тоже выбираю 1 порт, и ставлю галочку уже на Area, этим выбираем щелевой порт.Затем в первом поле, где мы раньше вводили диаметр трубы, вводим площадь порта, для 45 думаю 140 кв.см будет достаточно.И программа выдает нам длину уже 56 см.В этом случае грязный объем короба выходит=45+4+объем порта около 7.8 литра=56.8 литров.
АЧХ меняться от вида порта не будет, с помощью кнопки Cursor, правее от кнопки Clear, вы можете пробежаться по графику и посмотреть начало, пик и конец АЧХ, в нашем случае пик выходит на 44 Гц.

Ну вот вроде и всё рассказал.За дополнениями, отзывами и пожеланиями обращайтесь в комменты.Ну и по традиции кое-что уточню:
1)Это пособие для новичков, т.е. не все нюансы учтены, но для обычной системы всё устроит, потому что профи умеют считать и сами)))
2)Вы можете следовать моим советам, а можете нет, всё на Вашей ответственности и совести.

www.drive2.ru

Фазоинверторный или закрытый корпус сабвуфера, что лучше? 14 августа `16

Единственный эффективный способ для получения полного, богатого баса - это добавление сабвуфера к звуковой системе. Сабвуфер позволит значительно расширить воспроизведение низких частот в аудиосистеме и улучшит качество звука, независимо от того, какую музыку вы слушаете.

В основном, существуют два типа басов: плотный и гулкий. И в зависимости от предпочитаемой музыки уже стоит выбирать, какой тип сабвуфера подойдет для вас.

Долгое время на форумах обсуждался вопрос что лучше – фазоиверторный или закрытый корпус сабвуфера? Там нет недостатка мнений по этому поводу, но, к сожалению, есть много распространенных заблуждений. Одни считают, что вентилируемый сабвуфер, предназначен исключительно для звуковых эффектов и не годятся для музыки, другие говорят, что запечатанные боксы более музыкальны, но им, как правило, не хватает глубины баса.

И хотя присутствуют некоторые дебаты по этой теме, здесь есть и зерно истины. Оба вида сабвуферов имеют свои плюсы и минусы. Так что, перед приобретением саба, стоит тщательно продумать, какие результаты вы хотите получить.

Здесь мы постараемся разобраться, в чем различие между этим двумя видами.
 
Герметичный корпус: плюсы и минусы.

Что отличает закрытые корпуса от фазоинверторных, это их меньший размер. Закрытый ящик, как правило, более компактен, и как следствие, он подойдёт для установки во многих транспортных средствах. Если свободное пространство является проблемой, это будет неплохой вариант. Но размер не единственный фактор, который отличает закрытые корпуса от открытых, различие так же есть и в звуке. На самом деле, воздух внутри таких коробок действует как амортизатор дифузора сабвуфера. Он ограничивает движение низкочастотного динамика, что приводит к равномерному воспроизведению, соответственно на выходе получается более жесткий и точный бас.


Плюсы:

• Как правило, закрытые боксы для сабвуфера меньше;

• Качество звука и точность гораздо лучше;

• Отличная переходная характеристика.

Минусы:

• Что касается минусов, их довольно сложно найти. Единственным недостатком может являться эффективность. Позвольте мне остановиться на том, что происходит внутри запечатанного бокса;

В отличие от фазоинверторных коробок, воздух внутри закрытого пространства сильно ограничивает движение дифузора - задняя волна рассеивается внутри корпуса, что ослабляет звуковой сигнал на выходе. В такой ситуации потребуется более мощный усилитель с отдельным питанием, для компенсации потерь в эффективности.

Фазоинверторный корпус: плюсы и минусы.

Корпус открытого типа может воспроизводить громкий, гулкий бас с большей энергией и реверберацией, чем закрытые боксы. Это достигается с помощью негерметичного корпуса, без использования какого-либо дополнительного звукового эквалайзера или цифрового процессора. Отличие с закрытым боксом состоит в относительно небольшом отверстии в корпусе. Несмотря на простой дизайн, при использовании фазоинверторного сабвуфера бывает довольно трудно получить хороший, сбалансированный звук на выходе.

Хитрость заключается в идеально подобранном размере корпуса и подходящем размере отверстия. Вентиляционное отверстие перенаправляет звук из задней части конуса и добавляет его к звуку, исходящему от фронтальной части, что значительно увеличивает громкость басов. Такая схема позволяет использовать довольно скромный внешний усилитель, и получать неплохие результаты. Еще одно преимущество такого типа оформления корпусов, заключается, в долговечности сабвуфера, что происходит благодаря потоку воздуха, охлаждающего динамик.

Плюсы:

• Снижение искажений и вибрации дифузора;
• Фазоинверторные боксы дадут вам более четкий звуковой удар в определенных видах музыки. Из-за воздуха, поступающего в вентиляционное отверстие, звук слегка напоминает свист, похожий на тот, который можно получить с помощью пустой бутылки.

Минусы:

• Звук, получаемый с помощью вентиляционного канала, может принести больше вреда, чем пользы для некоторых типов музыки;
• Такой тип корпуса более чувствителен к изменениям климата, таким как влажность, температура и т.д.;
• Такой тип корпуса способствует физической усталости человека;
• Из-за высокого внутреннего давления, они должны быть более прочными, что делает их немного сложнее в изготовлении.

Вердикт

Мы рассмотрели два различных способа, чтобы определить, какой тип боксов будет соответствовать вашим потребностям. Фазоинверторный тип оформления, имеет расплывчатый бас, с помощью закрытыго ящика, получается более плотный звук. Если вы хотите чтобы басы отдавались в землю, фазоинверторный корпус подойдет как нельзя лучше. В противном случае, если вы ищете способ, чтобы добавить некоторую глубину музыке, закрытый ящик прекрасно справится с этим. Тп с оформдением "фазоинвертор" звучит громче нежели закрытый ящик, из-за того, что отверстие значительно увеличивает выход резонансных частот, что значительно расширяет чувствительность сабвуфера и позволяет добиться существенно большей басовитости.

Все вышеперечисленное в основном сводится к простому факту: закрытый ящик предназначен для более качественного звука, в то время как фазоинверторные  используют для громкости. Но есть и некоторые исключения из этого правила. В конце концов, мы считаем, что качество звука это в гораздо большей степени наличие хорошей техники, а не определенный вид акустического оформления сабвуфера.

autoazart.ru

Фазоинвертор не на бумаге | журнал АвтоЗвук

Такие задачи возникают у детей, у взрослых и у олигархов. Первым задают, у вторых горят, третьи — контролируют. Все эти решаются известными методами, мы пойдём дальше.

Закономерным финалом саги о фазоинверторе будут практические аспекты его воплощения в жизнь. Ключевым элементом здесь становится именно труба, она же — тоннель, она же в результате рабской транслитерации с английского — порт. Именно она, труба, позволит реализовать на практике два главных параметра, определяющие акустический облик задуманного фазоинвертора: объём корпуса и частота его настройки. Эти две величины, одна в литрах, вторая — в герцах, становятся результатом либо самостоятельного расчёта, либо следования ранее сделанным калькуляциям. Их источником могут быть изготовители динамика, наши тесты или же советы специалистов, основанные на их практике. Во всех трёх случаях бывает, что даются готовые размеры тоннеля, обеспечивающие настройку известного объёма на нужную частоту, но, во-первых, не каждый раз, а во-вторых, слепое копирование не всегда возможно и всегда непохвально. Так что более общей и гораздо более продуктивной будет такая постановка задачи: известны объём и частота, а вопрос об их физической, в материале, реализации станем решать самодеятельно. Часть истории будет организована по принципу вопросов и ответов: номенклатура вопросов известна, в редакционной почте они повторяются с регулярностью, дающей повод для статистических выкладок, которые так любит наш тестовый департамент. Не стану отнимать у них любимую игрушку, у нас — свои. Итак, что вначале, рассчитываем тоннель или покупаем трубу, которой этим тоннелем предстоит стать? По идее надо вначале купить — трубы бывают не любого диаметра, а из некоторого ряда значений, если брать готовые, а не накручивать самому из бумаги на клею, как пионер из кружка юного космонавта. Но начать придётся всё же с хотя бы грубой прикидки, и дело здесь в том, что…

Толщина имеет значение

Если тоннель действительно труба (есть ведь и варианты), какой она должна быть в диаметре? Самый общий и самый грубый ответ: чем больше, тем лучше. Совет действительно радикален и может вызвать протестную реакцию: а если я возьму и сделаю тоннель диаметром вдвое больше динамика? Не возьмете и не сделаете, как бы ни старались, об этом больше ста лет назад позаботился некто Герман Гельмгольц, резонатором имени которого фазоинвертор и является, а позже — создатели автомобилей, сделавшие их по габаритам меньше существовавших в то время паровозов. Итак, по порядку, почему больше и почему что-то этот процесс остановит.

К вопросу о толщине: проталкивая тот же объём воздуха через более тесный тоннель, его придётся разгонять до более высокой скорости. А «скорость — это смерть»

Во время работы вблизи частоты настройки, где, собственно, и выполняет свои функции тоннель фазоинвертора, добавляя от себя к звуковым волнам, порождаемым колебаниями диффузора, внутри тоннеля движется воздух. Движется колебательно, туда-сюда. Объём движущегося воздуха — точно такой же, какой во время каждого колебания приводится в движение диффузором, он равен произведению площади диффузора на его ход. Для тоннеля этот объём — произведение площади сечения на ход воздуха внутри тоннеля. Площадь сечения реально всегда меньше площади диффузора (если кто ещё не отказался от угрозы сделать такой же, а то и больше, скоро никуда не денутся и откажутся), и, чтобы переместить такой же объём, воздуху надо двигаться быстрее, скорость в тоннеле с уменьшением диаметра возрастает пропорционально уменьшению площади его сечения. Чем это плохо? Всем сразу. Прежде всего тем, что модель резонатора Гельмгольца, на которой всё основано, предполагает, что потери энергии на трение воздуха о стенки тоннеля отсутствует. Это, разумеется, идеальный случай, но чем дальше мы от него отойдём, тем меньше работа фазоинвертора будет походить на то, чего мы от него ожидаем. А потери на трение в тоннеле тем выше, чем больше скорость воздуха внутри. Теоретически формула, да и несложная программа, на ней основанная, этих потерь не учитывает и безропотно выдаст вам расчётную длину тоннеля при диаметре хоть в палец, но работать такой фазоинвертор не будет, всё умрёт в завихрениях воздуха, пытающегося стремительно летать по тесному тоннелю взад-вперёд. Текст когда-то виденного мной агитационного плаката ГАИ «Скорость это смерть» к движению воздуха в тоннеле подходит безусловно, если смерть отнести к эффективности фазоинвертора.

Гельмгольц написал бы свою формулу точно так же, просто в тот момент не было фотографа

Впрочем, намного раньше, чем фазик погибнет как средство звуковоспроизведения, он станет источником звуков, для которых не предназначен, вихри, возникающие при излишне высокой скорости движения воздуха, создадут струйные шумы, нарушающие гармонию басовых звуков самым бессовестным и неэстетичным образом.

Окончательная и фактическая формула, заменяющая компьютерную программу. Она правильная, проверили неоднократно. Смысл выделенного красным «хвостика» будет объяснен в тексте

Что следует принять за минимальное значение площади сечения тоннеля? В разных источниках вы найдёте разные рекомендации, далеко не все из них авторами были когда-либо опробованы хотя бы путём вычислительного эксперимента, о других уж не говорим. Как правило, в такие рекомендации закладываются две величины: диаметр диффузора и максимальная величина его хода, то самое Xmax. Это разумно и логично, но в полной мере относится лишь к работе сабвуфера на предельном режиме, когда о качестве звучания говорить уже немного поздно. Основываясь на многочисленных практических наблюдениях, можно взять на вооружение куда более простое правило, оно небезупречно и не совсем универсально, но работает: для 8-дюймовой головки тоннель должен быть не меньше 5 см в диаметре, для 10-дюймовой — 7 см, для 12-ти и больше — 10 см. Можно ли больше? Даже нужно, но вот именно сейчас нас кое-что остановит. А именно — длина тоннеля. Дело в том, что…

Длина имеет значение

Как и было сказано, её скомандует великий Герман фон Гельмгольц. Вот он, у доски в Гейдельбергском университете, а на доске — та самая формула. Ну ладно, в этот раз её написал я, но придумал — он и написал бы точно так же. Эта немудрёная, поскольку выведена для идеального случая, зависимость показывает, какова будет частота резонанса некоей полости (нам привычнее ящик, хотя Герман фон делал эдакие пузыри с трубами-хвостиками) в зависимости от объёма V, длины L и площади сечения хвостика. Обратите внимание: параметров динамика здесь нет, и было бы странно, если бы они были. В любом случае полезно запомнить и никогда не поддаваться на провокации: настройка фазоинвертора полностью и исчерпывающе определяется размерами ящика и характеристиками тоннеля, соединяющего этот ящик с окружающей средой. Помимо этого в формулу входят только скорость звука в атмосфере планеты Земля, обозначенная «с», и число «пи», не зависящее даже от планеты.

Может ли тоннель находиться снаружи ящика? Да целая фирма на этом построила свой бизнес, патент на удобный для размещения сабвуфер был растиражирован сотнями тысяч басовых труб SAS Bazooka. А производители встроенных сабвуферов для домашних театров вообще не парятся…

Для практических целей, а именно — вычисления длины тоннеля по известным данным, формулу легко преобразовать, вспомнив родную школу, а константы подставить в виде чисел. Это делали многие. Многие же публиковали результаты этого волнующего процесса, и автору немного удивительно, как можно было зрелищно обделаться при операции с тремя-четырьмя числами. В общем, треть опубликованных на бумаге и в Сети преобразованных формул непостижимым образом являются ахинеей. Правильная приводится здесь, если подставлять величины в показанных чёрным единицах.

Эта же формула плюс некоторые поправки заложена и во все известные программы по расчёту фазоинверторов, но прямо сейчас формула для нас удобнее, всё на виду. Смотрите: что будет, если вместо минималистского тоннеля поставить другой, попросторнее (и потому получше)? Потребная длина возрастёт пропорционально квадрату диаметра (или пропорционально площади, но ведь мы трубу-то собрались по диаметру покупать, по-другому не продают). Перешли от 5-сантиметровой трубы к 7-сантиметровой, это к примеру, длина при той же настройке понадобится вдвое больше. Перешли на 10 см — вчетверо. Беда? Пока — полбеды. Дело в том, что…

Калибр имеет значение

Беда сейчас будет. Ещё раз глядим на формулу, на этот раз — в знаменатель, фокусируйте зрение. При всех прочих равных длина тоннеля будет тем больше, чем меньше объём ящика. Если для того, чтобы настроить на 30 Гц 100-литровый объём, имея в распоряжении 100-миллиметровую сантехническую трубу, надо открыжить и вклеить в ящик отрезок говнопровода протяжённостью 25 сантиметров, то при объёме ящика 50 л это будет полметра (что уже не меньше, чем полбеды), и при довольно распространённых 25 л тоннель такой толщины должен будет иметь метровую длину. Это уже беда, без вариантов.

Можно ли тоннель оставить внутри, но согнуть как удобнее? Вот вам ответ

В наших, практических условиях объём ящика в первую очередь определяется параметрами динамика, и в силу причин, читателям этой серии уже хорошо известных, для головок калибра 8 дюймов оптимальный объём редко превышает 20 л, для «десяток» — 30 — 40, лишь когда дело доходит до 12-дюймового калибра, мы начинаем иметь дело с объёмами порядка 50 — 60 л, и то не всегда.

Вот и получается какой-то парад суверенитетов: частота настройки ФИ определяется тем басом, который мы от него хотим получить, будь он на «восьмёрке» или на «пятнашке» — не важно. А частота настройки ящика опять не зависит от динамика, чем меньше объём, тем длиннее подавай тоннель. Итог парада: как мы неоднократно замечали в тестах малокалиберных сабвуферов, желательный и многообещающий вариант оформления в ФИ физически невозможно (или затруднительно) реализовать. Даже если не жалко места в багажнике, нельзя объём ящика ФИ делать больше оптимального, а оптимальный нередко оказывается настолько мал, что настроить его на инвариантную к прочим факторам частоту 30 — 40 Гц немыслимо. Вот пример из недавнего теста 10-дюймовых сабвуферных головок («А3» №11/2006): если взять за аксиому диаметр трубы 7 см, то для того, чтобы сделать фазоинвертор на головке Boston, понадобился бы её кусок длиной 50 см, для Rainbow — 70 см, А для Rockford Fosgate и Lightning Audio — около метра. Сравните с рекомендациями в тесте этого номера, относящимися к 15-дюймовым головкам: ни у одной таких проблем не отмечено. Почему? Не из-за динамика, как такового, а из-за исходного объёма, выбранного по параметрам динамика. Что делать? Встречать беду во всеоружии. Оружие нам выковали поколения специалистов (и не только). Знаете, в чём тут дело?

Форма имеет значение

Вы едва ли могли не заметить: я очень люблю копаться в патентах, поскольку считаю, пусть дорога от изобретения к реальной жизни не столь уж коротка, патент — отражение мысли в виде вектора, то есть — с учётом направления. Большинство новаций, предложенных (и неуклонно предлагаемых) неутомимыми умами в отношении фазоинвертора, сконцентрировано на борьбе с двумя мешающими факторами: длина тоннеля, когда его сечение велико, и струйные шумы, когда его сечение, стремясь сократить длину, попытались уменьшить. Первое, простейшее решение, о допустимости которого нас спрашивают в редакционной почте раз по пять в месяц: можно ли тоннель поместить не внутрь ящика, а снаружи? Вот ответ, окончательный, фактический и настоящий, как бумага на квартиру профессора Преображенского: можно. Хоть частично, хоть целиком, внутрь ящика тоннель запихнули исключительно из эстетических соображений, у фон Гельмгольца он торчал снаружи, и ничего, он это пережил. Да и современность наша даёт примеры: вот, скажем, ветераны car audio не могут не помнить (многие, честно говоря, не могут забыть) «басовые трубы» фирмы SAS Bazooka. Они ведь начались с патента на сабвуфер, который удобно поместить за сиденьем грузовика — любимого транспорта американцев. Для этого изобретатель протянул трубу фазоинвертора вдоль корпуса снаружи, заодно уж придав её распластанную по поверхности цилиндрического корпуса форму. Это — один пример, есть другой: некоторые фирмы, выпускающие встроенные сабвуферы для домашних кинотеатров, выводят наружу трубу-тоннель полосового сабвуфера-бандпасса. Тип сабвуфера в данном случае значения не имеет: это тот же резонатор имени сами знаете кого. Ещё одно решение тоже, судя по письмам, ищут, но опасаются. «Можно ли гнуть тоннель?» Ответ — в стиле Филиппа Филипповича и очевиден. Иначе не выпускали бы сразу несколько компаний (DLS, JL Audio, Autoleads, etc. etc.) гибкие трубы специально для этой цели. А в области патентной документации есть даже интересная подсказка, как можно эту задачу решить не без изящества и материальной экономии: была в своё время предложена конструкция модельного тоннеля, который бы собирался из типовых элементов в любой желаемой форме, иллюстрация поведает об остальном. От себя добавлю: большая часть изображённых в патенте деталей трогательно напоминает номенклатуру элементов канализационных сетей местного значения, что и является практическим рецептом внедрения интеллектуального эксцесса американского изобретателя.

Экзотические, отчаянные решения: свернуть тоннель спиралью или винтом

Борясь с неуместной длиной тоннеля, часто идут по пути строительства так называемых «щелевых портов», их достоинство — в конструктивной интеграции с корпусом, что позволяет, при известном воображении, сделать тоннель довольно протяжённым, на прилагаемой схеме — сразу несколько вариантов, которым вопрос, разумеется, далеко не исчерпывается (три верхних эскиза принадлежат перу известного хай-эндщика Александра Клячина, остальное было делом техники).

Недостаток же щелей — в трудности подгонки длины, это не сантехнический ПВХ — махнул пилой, и дело в шляпе. Но есть решения и здесь: не так давно один из героев рубрики «Своя игра» пермяк Александр Султанбеков (не грех лишний раз напомнить стране имена её героев) продемонстрировал на практике, как можно настраивать щелевой порт, изменяя его сечение при неизменной длине, он это делал, укладывая внутрь фанерные проставки, как показано на фото где-то поблизости, поищите.

Щелевой тоннель интегрирован с ящиком, от этого его можно сделать длиннее обычного, «вставного», подгонять длину, правда, гораздо труднее…

В сворачивании тоннеля фазоинвертора некоторые светлые умы дошли до крайностей: один светлый предложил, например, свернуть тоннель в виде спирали вокруг цилиндрического корпуса громкоговорителя, другой на хитрую формулу Гельмгольца ответил тоннелем-винтом, такая концепция нам здесь, в России, знакома…

Значит, надо подгонять не длину, а сечение: вот как это делал один житель столицы Пермского края

Но вообще-то все эти решения (даже с винтом) — лобовые, здесь тоннель неизменной длины просто приделывается или складывается так, чтобы не мешал. Известны (и даже продаются в товарных количествах) реализации другого принципа. Здесь дело вот в чём.

Сечение имеет значение

Не площадь, как таковая, а характер её изменения по длине тоннеля. До сих пор мы, ведомые учением фон Гельмгольца в его самой простой, школьной форме, считали непременным, что поперечное сечение тоннеля постоянно. А нашлись люди, которые это условие нарушили и даже нажили на этом денег.

Опытные читатели помнят, например, статью нашего итальянского коллеги профессора Матарацци, где он предлагает эффективные решения по сокращению длины тоннеля путём придания ему конической или дважды конической, как песочные часы, формы. В «А3» №10/2001 расчёты по программам профессора приведены в виде таблиц, а сами программы сеньор недавно по нашей просьбе нашёл и прислал. Ко времени выхода этого номера из печати мы их выложим на сайт в разделе «Приложения». Правда, исходный код рассеянный профессор потерял безвозвратно, так что программки остаются на итальянском, если кто знает, как перевести, не имея кода, примем помощь с признательностью.

Уход от цилиндрической формы тоннеля предлагался и для сокращения его длины, и в виде локальной «аэродинамической обработки», для снижения струйных шумов

А пока отметим: в своих изысканиях профессор и не первый, и не единственный. На этом направлении происходили даже целые трагедии. Давние читатели журнала, возможно, помнят заметку в «А3» №2/2003 о судебном иске по поводу тоннеля фазоинвертора, не столь давним напомню: корпорация Bose усмотрела, что другая корпорация, JBL, использовав в своих колонках тоннели фазоинвертора с криволинейной образующей, названные Linear-A, тяжко посягнула на интеллектуальную собственность Bose Corp. В доказательство был приведен патент США, где упоминалось, в числе прочего, что неплохо было бы тоннель сделать с эллиптической образующей, он тогда будет и короче, и тише с точки зрения струйных шумов. Напрасно JBL пыталась втолковать суду, что у Bose эллипс, а у JBL — экспонента. Суд пояснил, что эллипсы-шмеллипсы — дело десятое, а колонок продали много, бухгалтерия Bose посчитала: нажива JBL составила 5676718 долларов и 32 цента, что и предлагалось внести в кассу обиженной стороны. Занесли как миленькие, включая медяки, а во всех колонках тоннели поменялись на другие, FreeFlow, типа — улучшенная модель. Вот как бывает…

Уход от цилиндра как формы тоннеля предлагали очень и очень многие. Кто — в стиле Матарацци с вариациями, кто — в скромном, локальном масштабе, ограничиваясь приданием криволинейных обводов концам цилиндрического тоннеля с целью снижения струйных шумов от завихрений. Наиболее же радикальное средство борьбы и с длиной, и с шумами не только придумал, но и эксклюзивно пользуется им уже не один год Мэттью Полк, основатель компании своего имени. Суть устройства под названием PowerPort такова: часть функций тоннеля берёт на себя одна или две, на каждом конце трубы, кольцевая щель между стенкой ящика и поставленным на строго рассчитанном расстоянии от неё «грибком», впрочем, на рисунке всё видно. Такими тоннелями снабжаются практически все домашние громкоговорители Polk Audio. И ежели только кто покусится, плакали его 32 цента плюс ещё кое-что. Для себя же, любимых, никто не запретит такую штуку попробовать, тем более что когда-то давно Полк выложил на свой корпоративный сайт таблицу в «Экселе», по которой можно всё рассчитать, я её тогда же с этого сайта попёр (получив на это позже, задним числом, благословение автора — я же не с целью наживы) и даже перевёл сопроводительные инструкции на великий и могучий, это всё лежит у нас на сайте.

Самое эффектное решение в этой области: PowerPort Мэттью Полка. Изобретение не осталось на бумаге, оно — составная часть почти всей акустики Polk Audio

A propos, и труды профессора Матарацци, и революционная разработка Мэттью Полка напоминают нам вот о чём: гимназическая формула Гельмгольца, помимо прочего, не учитывает очень существенный для практики эффект: в огромном большинстве случаев (практически — всегда) один из концов тоннеля прилегает к стенке корпуса сабвуфера, это касается как круглых труб, отпиленных заподлицо со стенкой, так и труб, снабжённых аэродинамической законцовкой, а в ещё большей степени — щелевых портов, прилепившихся к стенке. Близость стенки создаёт концевой эффект, напоминающий то, чего намеренно добивался автор PowerPort — виртуального удлинения тоннеля. Поэтому-то к формуле, непосредственно произведенной из трудов фон Гельмгольца современные прикладные спецы рекомендуют вводить поправку, чисто эмпирическую, но оттого не менее нужную, она выделена красным, чтобы было ясно, где классик XIX века, а где — практика XX.

А вообще-то, друзья дорогие, пора браться за дело, не век же в бумажках копаться. Дело-то как раз в этом…


www.xn--80aeatqv1al.xn--p1ai

Необычный короб фазоинвертор в седан — Сообщество «Автозвук» на DRIVE2

Полный размер

Всем здравия!
Решил поделиться своим первым опытом самостоятельной постройки саба в своем авто!
Что имеем:
Машина: седан Honda inspire 1995года Динамик: выбор пал на модель Kicx qs300,
2 катушки по 4Ом
600w rms
1200 max
Fs 27 Герц
Qts 0,505
Сначала хотел высокий бас и динамик был другой, но потом понял что все таки нужна настройка ниже и мягкий бас, машина нужна постоянно и давилова чтоб кузов разорвало мне не нужно, да и фронт собран на компонентах Kicx по этому я взял именно этот динамик…
Фронт: пара Kicx ex 10 играют от 80Гц, пара Kicx tornado 6.5М играют от 500Гц, пара рупоров Ural As-bv 20 рез от 5000Гц, все это мой первый опыт по этому фронт скорее все будет наращиваться, но пока так, рупора скорее всего тоже пойдут на замену
Усилители:
1) Ural 4.150 V3 качает мид и середину
2) Kicx qs 2.95 на рупора
3) Swat m 1.500 маловато наверное для этого саба, но лучшего варианта за такие деньги в природе не существует)))) саб подключен в 2 Ом, пока мне хватает
Питание:
3 АГМ плиты по 50 А/ч
Дубляж силовых кабелей, 1 аккум под капотом 2 в нише запаски, кабеля на силу КГ 50 и 0Ga
Теперь непосредственно о самом сабе:

Постройка саба для седана изначально сложная задача, обусловленная конструкцией кузова автомобиля, задача кратно усложняется в моем случае, если необходимо оставить место в багажнике, туда же уместить фальш пол, с окном и подсветкой, под ним 2 аккума, а еще надо выжать максимально высокий кпд с установленного в корпус динамика, и чтоб все это еще выглядело приятно))))
А еще это мой первый короб, который я сам расчитал, для этого пришлось переварить кучу информации, вникнуть и понять)))

Сначала я хотел собрать экспо, не нашел кто мне поможет в этом, а для самостоятельного расчета знаний не хватало, поэтому выбор пал на короб фазоинверторного типа на щели, т.к. отдача у него выше ЗЯ и тип музыки который я в основном слушаю подходит под одну настройку))
Итак, надо было понять какой объем бвгажника я могу выделить под саб, для этого очистил багажник снял размеры, накидал первый эскиз, вышло почти 90 литров чистого объёма))))
С них отнял объем динамика 5 литроа и порта 22 литра, изначально настройка была 37 Герц и порт был выведен в заднюю полку в место снятого штатного овала, динамик направлен в салон через центральный подлокотник.
По этому эскизу был собран первый короб из остатков чьего-то шкафа, чисто пробный вариант, т.к. переводить фанеру за зря очень не хотел и как оказалось не зря, по тому как короб не заиграл, порт маленький скорость воздуха в нем слишком большая да и направление в заднюю полку не удачное для седана, проведя работу над ошибками решил порт (щель 60х370х800мм) направить в крыло, уменьшил настройку до 32Герц, сделал новый эскиз и согласно ему в строительном магазине купил лист фанеры 15мм, там же его за отдельную плату распустил на детали, погрузил все в авто и начал процесс сборки…
Использовал саморезы 45мм, клей пва и герметик для дерева, забивные гайки М6, болты под шестигранник М6, потратил вечер на сборку, а еще пол вечера на удаление старого короба, который пришлось разбирать прямо в багажнике))))
новый короб залез в только в чистый багажник без запаски))))
И вот первый запуск в салоне, все получилось бас мягкий прогнал синусами, практически попал в настройку макс отдача на 34 герцах)))
отъездил так неделю, пришла очередь фальшпола и доп аккумов, перед началом короб был извлечен, сторона которая была на виду перетянута карпетом, а все остальное было перекрашено антигравием))))
В общем готов к Вашим аргументированым
Замечаниям! Всем ровной полки

Полный размер

Полный размер

Полный размер

www.drive2.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML.