Ключ к знанию

На что влияет датчик кислорода если он не работает


Как работает лямбда зонд — DRIVE2

Добавлю чтобы самому потом прочитать).

Как работает лямбда зонд

Датчик кислорода определяет концентрацию кислорода в выхлопных газах. Его количество зависит от нескольких параметров, главным из которых является зависимость отношения топлива к воздуху в смеси, которая подается в цилиндры двигателя. Принцип действия Всего существует и разработано две разновидности датчиков, определяющих количество кислорода в отработанных газах. Они различается основой, на которой они созданы. Первый использует двуокись циркония и носит название «циркониевый», второй – двуокись титана. Также они работают по разным принципам: первый измеряет выработку напряжения, второй – изменение напряжения. Последний датчик практически не распространен, поэтому рассмотрим принцип действия циркониевого. Датчик представляет по своей сути гальваническую батарею содержащий электрод цилиндрической формы, изготовленный из двуокиси циркония и покрытый внутри и снаружи платиной. Он находится на выпускном коллекторе, так что одна его сторона располагается в выхлопных газах, а вторая – в атмосфере. Принцип действия основывается на том, что две стороны, находящиеся в разных субстанциях действуют как два полюса батареи, а циркониевый электрод является электролитом. Так, прослеживается зависимость — чем выше концентрация кислорода, тем слабее разность потенциалов и напряжение на выходе. Состав топливно-воздушной смеси не стабилен и находится в постоянно меняющемся состоянии, поэтому работает датчик по следующей схеме: Датчик измеряет концентрацию кислорода и, если ее значение ниже предельного, передает большое напряжение на блок EFI, говорящее о том, что смесь богатая. Блок дает сигнал в сторону уменьшения подачи топлива, тем самым увеличивая концентрацию кислорода. Это изменения моментально фиксирует датчик низким напряжением и блок EFI в свою очередь повышает подачу топлива. Одним из важнейших параметров датчиков кислорода является период срабатывания. Под ним понимают время, за которое изменяется значение напряжения, выдаваемое датчиком. Его большой отрезок подразумевает неисправность датчиков, что очень сложно определить, так как данные передаваемые блоку EFI находиться в рабочем диапазоне и сам определить неисправность он не может. Контроль работоспособности и ресурс датчиков Проверку датчиков рекомендуется проводить во время каждого технического обслуживания автомобиля, так как они имеют цельную конструкцию и не нуждаются в отдельном осмотре. Если соблюдать условия эксплуатации, то они прослужат около 70 ±10 километров пробега. Какие основные причины поломки датчиков? Использование марки топлива, несоответствующей двигателю. Использование для крепления датчиков герметиков, имеющих в своем составе силикон или снижающих свою пластичность при комнатной температуре Повышение температуры датчика из-за поломок связанных с перебоями в зажигании, концентрации воздушно-топливной смеси и др. Неудачные многократные запуски двигателя в небольшой промежуток времени. Отключения свечей зажигания при проверке работы цилиндров двигателя. Обмывание наконечника датчика любой из эксплуатационных жидкостей. Система выпускания не герметична. Каковы признаки неисправности датчиков? Расход топлива повышен. Характеристики автомобиля с точки зрения динамики ухудшились. Двигатель работает не устойчиво при малых оборотах. Раскаленное состояние каталитического нейтрализатора и потрескивание в его районе расположения после остановки. В некоторых случаях срабатывание сигнала «СНЕСК ЕNGINЕ» при движении.

Про одну из ошибок:

P0130 — 02 Неисправность цепи датчика (Bank I Датчик 1) Статья Дейл Toalston ASE Certified Technician OBD-II код неисправности Техническое описание 02 Неисправность цепи датчика (Bank I Датчик 1) Что это значит? Датчик О2 создает напряжение в зависимости от содержания кислорода в выхлопных газах. Напряжение колеблется в пределах от 0,1 и .9 вольта, 0,1, указывающие наклоняетесь и +0,9 с указанием богатых. Контроллер ЭСУД постоянно отслеживает это напряжение, а в замкнутом контуре, чтобы определить, сколько топлива впрыснуть. Если контроллер ЭСУД определяет, что напряжение датчика O2 была слишком низкой (менее чем .4 вольта) для слишком долго (в течение более 20 секунд (время зависит от модели)), этот код установлен. Потенциальные Симптомы В зависимости, если проблема носит непостоянный характер или нет, не может быть никаких других, чем MIL (индикатор неисправности лампы) освещения симптомы. Если проблема постоянна, то симптомы могут включать в себя один или несколько из следующих действий: MIL освещение Двигатель работает грубо, отсутствует или камнем Дует черный дым из выхлопной трубы Двигатель умирает Плохая экономия топлива причины Обычно причиной p0130 является плохой кислородный датчик, тем не менее, это не всегда так. Если ваши o2 датчики не были заменены, и они старые, это хорошая ставка, что датчик является проблемой. Но, это может быть вызвано любым из следующих: Вода или коррозии в разъеме Ослабленные клеммы в разъеме Проводка сжигали на компонентов выхлопных газов Обрыв или короткое замыкание в проводке из-за трения о компонентах двигателя Отверстия в выхлопных газах позволяет подсос кислорода в выхлопной системе Незамеренный утечек вакуума в двигателе Bad o2 датчик Bad PCM Возможные решения С помощью диагностического прибора, определить, является ли банк 1, датчик 1 правильно переключения. Он должен быстро переключаться между богатыми и постное, равномерно. 1. Если это произойдет, то проблема, скорее всего, прерывистый, и вы должны проверить проводку на наличие каких-либо видимых повреждений. Затем выполнить тест покачивания, манипулируя разъем и проводку, наблюдая за o2 напряжение датчика. Если он выпадает, зафиксировать соответствующую часть жгута проводов, где проблема находится. 2. Если он не включается должным образом, попытайтесь определить, если датчик точно читает выхлоп или нет. Сделайте это путем удаления подачи вакуумного регулятора давления топлива на короткое время. O2 показания датчика должен идти богатый, реагируя на дополнительное топливо добавляется. Переустановка питания регулятора. Затем вызывают обеднение путем удаления линии подачи вакуума от впускного коллектора. O2 показания датчика должен идти постное, реагируя на enleaned выхлопа. Если датчик работает должным образом, то датчик может быть в порядке, и проблема может быть отверстия в выхлопных газах или безучетного утечки вакуума в двигателе (ПРИМЕЧАНИЕ: Незамеренный вакуумные утечки в двигателе почти всегда сопровождается постное кодов обратитесь к соответствующему. изделия для диагностики незамеренный утечку вакуума). Если выхлопные газы действительно имеет отверстия в ней, вполне возможно, что датчик O2 может быть неправильное выхлоп из-за дополнительного кислорода в трубу через эти отверстия 3. Если ни одно из этого не так, и датчик o2 просто не коммут.или действует вяло, отключите датчик и убедитесь, что существует 5 Вольт опорного напряжения к датчику. Затем проверьте 12В питания к цепи нагревателя датчика О2. Также проверьте непрерывность замыкания на массу цепи заземления. Если какой-либо из них отсутствует, или не являются их надлежащее напряжение, ремонт обрыв или короткое замыкание в соответствующем проводе. Датчик o2 не будет работать должным образом без надлежащего напряжения. Если соответствующие напряжения присутствуют, замените датчик O2. Зарегистрируйтесь сейчас, чтобы задать вопрос (бесплатно) Связанные p0130 DTC Обсуждения

Read more at: www.obd-codes.com/p0130
Copyright OBD-Codes.com

Также — moi-nissan.ru/ogo-go/672-…chik-o2-lyambda-zond.html
drivedrom.ru/ustrojstvo-a…aet-lyambda-zond.html#i-3

www.drive2.ru

Все о Лямбда Зонте! — Nissan Almera, 1.8 л., 2004 года на DRIVE2

Лямбда-зонд (λ-зонд) — датчик кислорода (например: в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося свободного кислорода в выхлопных газах.

Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй — воздухом из атмосферы. Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до определенной температуры (для автомобильных двигателей 300—400 °C). Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

При одинаковой концентрации кислорода с обеих сторон электролита, датчик находится в равновесии и его разность потенциалов равна нулю. Если на одном из платиновых электродов концентрация кислорода изменяется, то появляется разность потенциалов, пропорциональная логарифму концентрации кислорода на рабочей стороне датчика. При достижении стехиометрического состава горючей смеси, концентрация кислорода в выхлопных газах падает в сотни тысяч раз, что сопровождается скачкообразным изменением э.д.с. датчика, которая фиксируется высокоомным входом измерительного устройства (бортового компьютера автомобиля).

Первые «лямбда-зонды» были резистивными, то есть изменяли свое сопротивление. Современные датчики работают как пороговые элементы.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения топливной смеси. В стехиометрии — λ = (реальное к-во воздуха) / (необходимое к-во воздуха).

λ=1 — стехиометрическая (теоретически идеальная) смесь;
λ>1 — бедная смесь;
λ<1 — богатая смесь (избыток бензина, воздуха не хватает для полного сгорания).
Поскольку некоторое количество кислорода должно присутствовать в выхлопе для нормального дожигания СО и СН на катализаторе, для более точного регулирования используют второй датчик, расположенный за катализатором.

O2SENSOR.png
Широкополосный лямбда-зонд
Разновидность кислородного датчика.

Wbo2.png
Основная разница зонда с широкой панелью LSU 4 по отношению к обычным λ-зондам — это комбинация сенсорных ячеек и так называемых накачивающих ячеек. Ячейки разделены диффузионным зазором шириной от 0,01 до 0,05 мм. Состав его газового содержимого постоянно соответствует λ=1, что для сенсорной ячейки значит напряжение в 450 милливольт. Содержание газа в зазоре и вместе с ним напряжение сенсора поддерживаются посредством различных напряжений, прикладываемых к накачивающей ячейке. При бедной смеси и напряжении сенсора ниже 450 милливольт ячейка выкачивает кислород из диффузионной полости. Если смесь богатая и напряжение лежит выше 450 милливольт, ток меняет свое направление, и накачивающие ячейки транспортируют кислород в диффузионные расщелины. При этом интегрированный нагревающий элемент устанавливает температуру области от 700 до 800 градусов.

При отказе датчика система переходит в аварийный режим без коррекции содержания воздуха в смеси.

Одной из основных причин отказа датчика в автомобиле (в России) являлось его «отравление» тетраэтилсвинцом. По мере перехода на качественный неэтилированный бензин эта проблема уходит в прошлое.

Форму напряжения на нем можно увидеть двумя способами:
сканером
мотортестером, подключив щупы и запустив самописец
Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.
Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.
О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.
На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.
К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.
Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.
МЕТОДИКА ПРОВЕРКИ ДАТЧИКА КИСЛОРОДА
Поняв, как работает датчик кислорода, легко понять методику его проверки.
Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.
Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.
Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.
Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.
Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.
Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.
Я упоминал, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.
Обратите внимание: эквивалентно
Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.

ДАТЧИК КИСЛОРОДА: ВЫВОДЫ
Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

Графики:

1. Идеальная работа. Эталонный график.

2. Отравленный датчик.

3. Обедненная смесь

4. Богатая смесь.

5. Бедная смесь.

,

www.drive2.ru

Все о датчике кислорода или Лямбда-зонде — DRIVE2

Лямбда-зонд устанавливается в потоке отработавших газов двигателя и измеряет уровень содержания кислорода в них. Анализируя осциллограмму напряжения выходного сигнала лямбда-зонда на различных режимах работы двигателя, можно оценить как исправность самого датчика, так и исправность системы управления двигателем в целом.

Признаком неисправности лямбда-зонда является повышенный расход топлива, ухудшение динамики автомобиля, ощутимое понижение мощности двигателя, возможна его неустойчивая работа на холостом ходу или «качание» оборотов холостого хода. Лямбда-зонд сравнивает содержание кислорода в выхлопных газах и в окружающем воздухе и представляет результат этого сравнения в форме аналогового сигнала. Применяются двухуровневые зонды, чувствительный элемент которых выполнен из оксида циркония либо из оксида титана, но сейчас им на смену приходят широкополосные лямбда-зонды.

Лямбда-зонд на основе оксида циркония Лямбда-зонд на основе оксида циркония генерирует выходной сигнал напряжением от 40–100 mV до 0.7–1.0 V. Размах напряжения выходного сигнала исправного лямбда-зонда достигает 950 mV. При пониженном содержании кислорода в отработавших газах, вызванном работой двигателя на обогащённой топливовоздушной смеси, датчик генерирует сигнал высокого уровня напряжением 0.65–1 V. При повышенном содержании кислорода (обеднённая топливная смесь) датчик генерирует сигнал низкого уровня напряжением 40–50 mV. Исправный лямбда-зонд начинает работать только после прогрева чувствительного элемента до температуры выше 350°С, когда его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В блоках управления двигателем большинства производителей опорное напряжение равно 450 mV. Такой блок управления двигателем считает лямбда зонд готовым к работе только после того как вследствие прогрева, датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150 – 250 mV.

Лямбда-зонд на основе оксида титана Напряжение выходного сигнала лямбда-зонда на основе оксида титана колеблется в диапазоне от 10–100 mV до 4–5 V. На изменение состава выхлопных газов такой зонд реагирует изменением своего электрического сопротивления. Сопротивление датчика высокое при низком содержании кислорода в отработавших газах (богатая смесь) и резко снижается при обеднении топливовоздушной смеси. За счёт этого датчик шунтирует поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением опорное напряжение 5 V. Выходной сигнал лямбда-зонда на основе оксида титана значительно быстрее реагирует на изменения уровня содержания кислорода в отработавших газах по сравнению со скоростью реакции датчика на основе оксида циркония.

Широкополосный лямбда-зонд Выходной сигнал широкополосного лямбда-зонда в отличие от двухуровневых зондов несёт сведения не только о направлении отклонения состава рабочей смеси от стехиометрического, но и о его численном значении. Анализируя уровень выходного сигнала широкополосного лямбда-зонда, блок управления двигателем рассчитывает численное значение коэффициента отклонения состава рабочей смеси от стехиометрического состава, что, по сути, является коэффициентом ? (лямбда). Выходное напряжение чувствительного элемента зонда изменяется в зависимости от уровня содержания кислорода в отработавших газах и от величины и полярности электрического тока, протекающего по кислородному насосу зонда. Блок управления двигателем генерирует и подаёт на кислородный насос зонда электрический ток, величина и полярность которого обеспечивает поддержание выходного напряжения чувствительного элемента зонда на заданном уровне. В электрическую цепь кислородного насоса включен измерительный резистор, падение напряжения на котором и является мерой уровня содержания кислорода в отработавших газах.

www.drive2.com

gazvavan › Блог › Датчик концентрации кислорода (Просой способ диагностирования в продолжении)

The sensor of concentration of oxygen
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение ( 50-100 до 850-900 мВ ( может до1.2 В.) . Для исправного датчика разница между максимальным и минимальным значениями должна быть не менее 500 мВ. )
При стехиометрическом составе топливно-воздушной смеси
(14.7: 1) его выходное напряжение составляет 0.4-0.5 В.

см. фото

в зависимости от температуры и наличия кислорода в окружающей среде. Рабочий диапазон температуры датчика начинается от 300 градусов. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Напряжение на выходе датчика должно переключаться с низкого на высокое и обратно (примерно в диапазоне от 200 до 800 мВ) с частотой 0.8…1.0 Гц Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с лямбда-зонда, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума

см. фото

Речь идет о системах ЕВРО-2, а не ЕВРО-3 или ЕВРО-4.
2. ДКК работает в этой системе только при выполнении двух условий: нет режима полной мощности (в серийных прошивках — примерно 75% дросселя, в тюнинговых, как правило, меньше) и не активен алгоритм обогащения по приращению дросселя. В этих режимах ДКК не работает и состав смеси определяется калибровками. Проще говоря, в режиме "тапка в пол" и при ускорении показания ДК не учитываются (то есть он не мешает динамике:). Положительный момент: даже в этих зонах работы действует расчетная адаптивная коррекция времени впрыска (память обучения), которая лишь помогает системе обеспечить именно тот состав смеси, который заложен в мощностных калибровках.
3. Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.Ресурс кислородного датчика как правило не превышает 70 тыс. км при удовлетворительном качестве топлива. Об остаточном ресурсе в первом приближении можно судить по амплитуде изменения напряжения на сигнальном проводе датчика, приняв за 100% амплитуду 0.9в. Лямбда-регулирование как функция ECU может быть проверена при помощи батарейки напряжением 1…1.5в и осциллографа. Последний следует установить в ждущий режим, засинхронизировав его импульсом управления впрыском. Измерению подлежит длительность этого импульса. Вначале размыкают соединение лямбда-зонда и ECU (при этом на свободно висящем лямбда-входе ECU должно отмечаться напряжение 0.45в – его появление свидетельствует о переходе ECU на работупо резервной части программы управления) и отмечают длительность импульса впрыска. Затем подключают «+» батарейки к лямбда-входу, а «-» — к массе, и наблюдают через несколько секунд уменьшение длительности импульса впрыска. Такая реакция будет означать стремление ECU обеднить смесь в ответ на моделирование по лямбда-входу ее обогащения. Затем следует соединить вход ECU с массой и наблюдать (также с некоторой задержкой) увеличения длительности измеряемого импульса. Такая реакция будет означать стремление ECU обогатить смесь в ответ на моделирование по лямбда-входу ее обеднения. Тем самым проверка лямбда-регулирования как функции ECU будет проведена. Отсутствие этой функции приводит к тем же внешним проявлениям, что и в случае отсутствия подогрева лямбда-зонда
Если к выхлопной трубе подсоединен четырехкомпонентный газоанализатор, он должен дать следующие показания:
СО — в соответствии с техническими данными автомобиля.
НС-не более 50.
СО2- более 15.0
О2 -не более 2.0
Лямбда: 1.0 ± 0.03.

см. фото

И так продолжение.

www.drive2.ru


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML. продвижение сайта