Ключ к знанию

Есть просто газ легчайший водород


Урок 21. Водород - самый лёгкий газ – HIMI4KA

В уроке 21 «Водород — самый лёгкий газ» из курса «Химия для чайников» рассмотрим водород как простое вещество и химический элемент; узнаем об истории открытия водорода и о его физических свойствах.

Название водорода происходит от латинского слова Hydrohenium, что означает «воду родящий». Химический символ (знак) Н — это первая буква латинского названия. И действительно, атомы водорода входят в состав молекулы воды Н2О.

Атомы водорода образуют двухатомные молекулы простого вещества водорода, формула которого Н2. Рассмотрим, что имеют в виду, когда говорят о химическом элементе водороде.

Водород как химический элемент

Атом водорода самый легкий, самый простой по строению и один из самых маленьких по размерам. Относительная атомная масса водорода равна:

Сравните ее с относительной атомной массой кислорода и убедитесь, что атомы водорода во много раз легче.

Атомы водорода соединяются с атомами других химических элементов, образуя сложные вещества. Как химический элемент водород входит в состав воды, кислот, природного газа, нефти, глюкозы и многих других веществ. В растительных и животных организмах, включая и человеческий, химический элемент водород содержится главным образом в составе воды и самых разнообразных органических веществ.

Водород как простое вещество

Молекулы водорода образованы двумя атомами химического элемента водорода. Формула его Н2. Относительная молекулярная масса простого вещества водорода равна:

Следовательно, молярная масса водорода равна:

Молярный объем водорода, как кислорода и других газов при нормальных условиях, равен:

В виде простого вещества водород встречается на Земле лишь в небольшом количестве в вулканических и некоторых других природных газах. Молекулы водорода Н2 обнаружены в верхних слоях земной атмосферы. В Солнечной системе простое вещество водород входит в состав атмосферы планет — Юпитера, Сатурна, Урана.

На заметку: Недавние исследования Юпитера, самой большой планеты Солнечной системы, позволили ученым высказать предположение, что под водородной атмосферой этой планеты находится океан жидкого водорода. Глубина этого океана — десятки тысяч километров. Ядро планеты составляет оболочка, состоящая из твердого водорода.

История открытия водорода

Еще в XVI в. Парацельсом было замечено, что при действии кислот на железо и другие металлы выделяется газ. Первоначально его назвали «горючим воздухом». Спустя примерно 100 лет горение водорода на воздухе описал Р. Бойль и этот газ научились собирать. Во второй половине XVIII в. английский ученый Г. Кавендиш подробно исследовал свойства «горючего воздуха». Он установил, что этот газ при сгорании на воздухе образует воду. Г. Кавендиша считают первооткрывателем водорода (1766).

Вывод о том, что «горючий воздух» представляет собой простое вещество, был сделан в 1784 г. французским химиком А. Лавуазье. Он и дал этому веществу латинское название, которое происходило от греческих слов «хюдор» — вода и «геннао» — рождаю. В те годы под элементами подразумевали простые вещества, которые нельзя далее разложить на составные части. Поэтому у химического элемента водорода такое же название, как и у простого вещества Н 2.

Физические свойства водорода

Водород при нормальных условиях находится в газообразном состоянии. Это бесцветный газ, у которого нет запаха и вкуса.

Молекула водорода самая легкая из молекул всех веществ. Поэтому газообразный водород по плотности значительно уступает воздуху и кислороду — он в 14,5 раза легче воздуха и в 16 раз легче кислорода. В этом легко убедиться на опыте.

Если наполнить три одинаковых резиновых шарика водородом, углекислым газом и кислородом, крепко завязать их ниткой и выпустить из рук одновременно, то они поведут себя по-разному (рис. 94). Шарик с водородом быстро поднимется к потолку, а шарики с углекислым газом и кислородом опустятся на пол. Быстрее окажется на полу шарик с
углекислым газом.

На заметку: Поскольку водород, как мы знаем, в 14,5 раза легче воздуха, им заполняли воздушные шары и дирижабли. Первыми поднялись на воздушном шаре французские физики Ф. Робер и Ж. Шарль (1783). В августе 1887 г. полет на воздушном шаре, наполненном водородом, с научной целью совершил Д. И. Менделеев.

Из-за своей малой массы и размеров молекулы водорода способны проникать через стенки сосуда, в котором содержится этот газ. Убедимся в этом на примере того же шарика с водородом. Даже если тщательно завязать его ниткой, спустя некоторое время шарик «сдуется». При повышенной температуре и давлении водород способен проникать и через стенки металлических сосудов.

На заметку: Некоторые металлы при повышенной температуре поглощают водород, впитывая его, как губка воду. Например, в образце металла палладия объемом 1 дм3 растворяется водород объемом свыше 800 дм3. При нагревании насыщенного водородом палладия этот газ легко выделяется обратно. Палладий и некоторые другие металлы могут служить как бы аккумуляторами водорода.

При нормальных условиях растворимость водорода в воде меньше, чем кислорода, — 0,0016 г водорода на 1 дм3 воды. Поскольку водород малорастворим, в лаборатории его собирают методом вытеснения воды или воздуха.

У водорода самые низкие после благородного газа гелия температуры кипения (−252,8 °С) и плавления (−259,2 °С).

Краткие выводы урока:

  1. Водород — наиболее распространенный элемент во Вселенной.
  2. Простое вещество водород Н2 — самый легкий газ, у которого нет запаха, цвета, вкуса.
  3. Водород мало растворяется в воде, его можно собирать методом вытеснения воды и воздуха.

Надеюсь урок 21 «Водород — самый лёгкий газ» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

himi4ka.ru

Водород — Википедия

Водород
Гелий →
Газ без цвета, запаха и вкуса

Водород в разрядной трубке

Название, символ, номер Водород / Hydrogenium (H), 1
Атомная масса
(молярная масса)
[1,008[1]; 1,00811][комм 1][2] а. е. м. (г/моль)
Электронная конфигурация 1s1
Радиус атома 53 пм
Ковалентный радиус 32 пм
Радиус иона 54 (−1 e) пм
Электроотрицательность 2,20[3] (шкала Полинга)
Степени окисления +1, 0, −1
Энергия ионизации
(первый электрон)
 1311,3 (13,595) кДж/моль (эВ)
Плотность (при н. у.) 0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления 14,01 K; −259,14 °C
Температура кипения 20,28 K; −252,87 °C
Уд. теплота плавления 0,117 кДж/моль
Уд. теплота испарения 0,904 кДж/моль
Молярная теплоёмкость 28,47[4] Дж/(K·моль)
Молярный объём 14,1 см³/моль
Структура решётки гексагональная
Параметры решётки a = 3,780 c = 6,167 Å
Отношение c/a 1,631
Температура Дебая 110 K
Теплопроводность (300 K) 0,1815 Вт/(м·К)
Номер CAS 12385-13-6

Водоро́д (H, лат. hydrogenium) — химический элемент периодической системы с обозначением H и атомным номером 1, самый лёгкий из элементов периодической таблицы. Его одноатомная форма — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы.

Три изотопа водорода имеют собственные названия: 1H — протий, 2H — дейтерий и 3H — тритий (радиоактивен). Ядро самого распространённого изотопа — протия — состоит из одного только протона и не содержит нейтронов.

При стандартных температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и крайне пожаро- и взрывоопасен[4]. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.

Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине, ниобии.

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.

В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород[5][6].

В 1766 году Генри Кавендиш был первым, кто признал газообразный водород индивидуальным элементом, назвав газ, выделяющийся при реакции металла с кислотой, «горючим воздухом». Он предположил, что «горючий воздух» идентичен гипотетическому веществу, называемому «флогистон», и в 1781 году обнаружил, что при его сгорании образуется вода[7][8].

Прямо указывал на выделение водорода и Михаил Ломоносов, но он уже понимал, что это не флогистон.

Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал[9]:

Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.

Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году — по аналогии с «кислородом» Ломоносова.

Во Вселенной[править | править код]

В настоящее время водород — самый распространённый элемент во Вселенной[10]. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %)[11]. Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.

В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы[править | править код]

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода.

В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха[12][13]).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %[14].

В промышленности[править | править код]

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа.[15] Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода, полученного из природного газа, оценивается в 1,5-3 доллара за 1 кг.

Ch5+h3O ⇄ CO+3h3{\displaystyle {\mathsf {CH_{4}+H_{2}O\ \rightleftarrows {}\ CO+3H_{2}}}}
  • Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:
h3O+C ⇄ CO↑+h3↑{\displaystyle {\mathsf {H_{2}O+C\ \rightleftarrows {}\ CO\uparrow +H_{2}\uparrow }}}
2NaCl+2h3O → 2NaOH+Cl2↑+h3↑{\displaystyle {\mathsf {2NaCl+2H_{2}O\ {\xrightarrow {}}\ 2NaOH+Cl_{2}\uparrow +H_{2}\uparrow }}}
2h3O→4e−2h3↑+O2↑{\displaystyle {\ce {2h3O ->[4e^{-}] 2h3 ^ + O2 ^}}}
Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[16] (англ.) или без мембраны http://kyivtoulouse.univ.kiev.ua/journal/index.php/fruajc/article/view/201.
2Ch5+O2⇄ 2CO+4h3{\displaystyle {\mathsf {2CH_{4}+O_{2}\rightleftarrows {}\ 2CO+4H_{2}}}}

В лаборатории[править | править код]

Zn+h3SO4→ZnSO4+h3↑{\displaystyle {\mathsf {Zn+H_{2}SO_{4}\rightarrow ZnSO_{4}+H_{2}\uparrow }}}
Ca+2h3O→Ca(OH)2+h3↑{\displaystyle {\mathsf {Ca+2H_{2}O\rightarrow Ca(OH)_{2}+H_{2}\uparrow }}}
NaH+h3O→NaOH+h3↑{\displaystyle {\mathsf {NaH+H_{2}O\rightarrow NaOH+H_{2}\uparrow }}}
2Al+2NaOH+6h3O→2Na[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\uparrow }}}
Zn+2KOH+2h3O→K2[Zn(OH)4]+h3↑{\displaystyle {\mathsf {Zn+2KOH+2H_{2}O\rightarrow K_{2}[Zn(OH)_{4}]+H_{2}\uparrow }}}
2h4O++2e−→2h3O+h3↑{\displaystyle {\mathsf {2H_{3}O^{+}+2e^{-}\rightarrow 2H_{2}O+H_{2}\uparrow }}}

Очистка[править | править код]

В промышленности реализованы несколько способов очистки водорода из углеродосодержащего сырья (т. н. водородсодержащий газ — ВСГ)[17].

  • Низкотемпературная конденсация: ВСГ охлаждают до температур конденсации метана и этана, после чего водород отделяют ректификацией. Процесс ведут при температуре –158 °C и давлении 4 МПа. Чистота очищенного водорода составляет 93—94 % при его концентрации в исходном ВСГ до 40 %.
  • Адсорбционное выделение на цеолитах: настоящий метод на сегодняшний день наиболее распространён в мире. Метод достаточно гибок и может использоваться как для выделения водорода из ВСГ, так и для доочистки уже очищенного водорода. В первом случае процесс ведут при давлениях 3,0—3,5 МПа. Степень извлечения водорода составляет 80—85 % с чистотой 99 %. Во втором случае часто используют процесс «PSA» фирмы «Union Carbide». Он впервые был реализован в промышленности в 1978 году. На настоящий момент функционирует более 250 установок от 0,6 до 3,0 млн м3 Н2/сут. Образуется водород высокой чистоты — 99,99 %.
  • Абсорбционное выделение жидкими растворителями: Этот метод применяется редко, хотя водород получается высокой чистоты — 99,9  %.
  • Концентрирование водорода на мембранах: На лучших образцах метод позволяет получать водород чистотой 95—96 %, однако производительность таких установок невысока.
  • Селективное поглощение водорода металлами: Метод основан на способности сплавов лантана с никелем, железа с титаном, циркония с никелем и других поглощать до 30 объёмов водорода.

Стоимость[править | править код]

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2—7 USD/кг.[18] В небольших количествах перевозится в стальных баллонах зелёного или тёмно-зелёного цвета.

Эмиссионный спектр атомов водорода. Четыре видимые глазом спектральные линии серии Бальмера

Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх[19]. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа, за счёт чего быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н2. При нормальных условиях это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9⋅106 Дж/кг, малорастворим в воде — 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2[⇨].

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.

В 1935 году Уингер и Хунтингтон высказали предположение о том, что при давлении свыше 250 тысяч атм водород может перейти в металлическое состояние. Получение этого вещества в устойчивом состоянии открывало очень заманчивые перспективы его применения — ведь это был бы сверхлёгкий металл, компонент лёгкого и энергоёмкого ракетного топлива. В 2014 году было установлено, что при давлении порядка 1,5—2,0 млн атм водород начинает поглощать инфракрасное излучение, а это означает, что электронные оболочки молекул водорода поляризуются. Возможно, при ещё более высоких давлениях водород превратится в металл[20]. В 2017 году появилось сообщение о возможном экспериментальном наблюдении перехода водорода в металлическое состояние под высоким давлением[21][22].

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположны друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Равновесная мольная концентрация параводорода в смеси в зависимости от температуры

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1. Десорбированный с угля параводород при нагревании превращается в ортоводород с образованием равновесной смеси. При комнатной температуре равновесна смесь ортоводорода и параводорода в отношении около 75:25[23]. Без катализатора взаимное превращение происходит относительно медленно, что даёт возможность изучить свойства обеих модификаций. В условиях разреженной межзвёздной среды характерное время перехода в равновесную смесь очень велико, вплоть до космологических.

Термодинамическое состояние насыщенного пара водорода с различным изотопным составом

Наиболее известны три изотопа водорода: протий 1H (атомное ядро — протон), дейтерий 2Н (ядро состоит из одного протона и одного нейтрона) и тритий 3Н (ядро состоит из одного протона и двух нейтронов). Эти изотопы имеют собственные химические символы: протий — H, дейтерий — D, тритий — T.

Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно[24]. Оно может незначительно меняться в зависимости от источника и способа получения водорода. Тритий нестабилен, претерпевает бета-распад с периодом 12,32 года, превращаясь в стабильный гелий-3[24]. Тритий встречается в природе в следовых количествах, образуясь главным образом при взаимодействии космических лучей со стабильными ядрами, при захвате дейтерием тепловых нейтронов и при взаимодействии природного изотопа лития-6 с нейтронами, порождёнными космическими лучами.

Искусственно получены также тяжёлые радиоактивные изотопы водорода с массовыми числами 4—7 и периодами полураспада 10−21—10−23 с[24].

Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.

Из всех изотопов химических элементов физические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов[25].

Температура
плавления,
K
Температура
кипения,
K
Тройная
точка
Критическая
точка
Плотность,
кг/м³
T, K P, кПа T, K P, МПа жидкий газ
H2 13,96 20,39 13,96 7,3 32,98 1,31 70,811 1,316
HD 16,65 22,13 16,6 12,8 35,91 1,48 114,0 1,802
HT 22,92 17,63 17,7 37,13 1,57 158,62 2,31
D2 18,65 23,67 18,73 17,1 38,35 1,67 162,50 2,23
DT 24.38 19,71 19,4 39,42 1,77 211,54 2,694
T2 20,63 25,04 20,62 21,6 40,44 1,85 260,17 3,136

Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией

ru.wikipedia.org

Газ водород, физические свойства водорода, химические свойства водорода.

Продажа Производство Доставка

Газообразный

Жидкий

 

Водород (лат. Hydrogenium; обозначается символом H) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H — протон. Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).

Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

Распространённость

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН4 + 2Н2O = CO2↑ + 4Н2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

H2O + C ? H2 + CO

3.Из природного газа.

Конверсия с водяным паром:

CH4 + H2O ? CO + 3H2 (1000 °C)

Каталитическое окисление кислородом:

2CH4 + O2 ? 2CO + 4H2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl → ZnCl2 + H2

2.Взаимодействие кальция с водой:

Ca + 2H2O → Ca(OH)2 + H2

3.Гидролиз гидридов:

NaH + H2O → NaOH + H2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Zn + 2KOH + 2H2O → K2[Zn(OH)4] + H2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H3O+ + 2e → H2↑ + 2H2O

Физические свойства

Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций. 

Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. 

Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×106 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

 

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a=3,75 c=6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1H — протий (Н), 2Н — дейтерий (D), 3Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10−22 — 10−23 с.

Природный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D2 ещё меньше. Отношение концентраций HD и D2, примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

 

 

Температура
плавления,
K

Температура
кипения,
K

Тройная
точка,
K / kPa

Критическая
точка,
K / kPa

Плотность
жидкий / газ,
кг/м³

H2

13.96

20,39

13,96 / 7,3

32,98 / 1,31

70,811 / 1,316

D

16,65

22,13

16,60 / 12,8

35,91 / 1,48

114,80 / 1,802

HT

 

22,92

17,63 / 17,7

37,13 / 1,57

158,62 / 2,310

D2

18,65

23,67

18,73 / 17,1

38,35 / 1,67

162,50 / 2,230

DT

 

24.38

19,71 / 19,4

39,42 / 1,77

211,54 / 2,694

T2

20,63

25,04

20,62 / 21,6

40,44 / 1,85

260,17 / 3,136

 

Дейтерий и тритий также имеют орто- и пара- модификации: p-D2o-D2p-T2o-T2. Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства

Доля диссоциировавших молекул водорода

Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2

и с единственным неметаллом — фтором, образуя фтороводород:

F2 + H2 = 2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О2 + 2Н2 = 2Н2О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н2O

Записанное уравнение отражает восстановительные свойства водорода.

N2 + 3H2 → 2NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl2 + H2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 → CH4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na + H2 → 2NaH

Ca + H2 → CaH2

Mg + H2 → MgH2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH2 + 2H2O → Ca(OH)2 + 2H2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H2 → Cu + H2O

Fe2O3 + 3H2 → 2Fe + 3H2O

WO3 + 3H2 → W + 3H2O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

 

Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, планетами-гигантами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением . Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

  • При производстве аммиака, метанола, мыла и пластмасс
  • При производстве маргарина из жидких растительных масел
  • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Пищевая промышленность

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

 

«Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogenLh3LH2) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения [6] в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Спиновые изомеры водорода

Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW h3R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.


Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

 

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

Препятствия

Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H2/O2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».

 

tgko.ru

Свойства водорода — урок. Химия, 8–9 класс.

Физические свойства

Водород имеет молекулярное строение. Его молекула h3 состоит из двух атомов, соединённых ковалентной неполярной связью.

 

При обычных условиях водород — газ без цвета, запаха и вкуса. Это самое лёгкое вещество на Земле. Его плотность равна примерно \(0,9\) г/дм³. Водород в \(14,5\) раз легче воздуха.

 

В воде водород растворяется плохо (примерно \(2\) объёма на \(100\) объёмов воды), но может поглощаться некоторыми металлами. Например, \(1\) объём палладия может растворить до \(900\) объёмов водорода.

 

Температура кипения водорода низкая. Она равна \(–253\) °С. Ниже температура кипения только у гелия.

 

Молекулы водорода благодаря своей малой массе и размерам могут проникать сквозь стенки сосуда, в котором он содержится. Заполненный водородом шарик через некоторое время сдувается. При температуре \(300\)–\(600\) °С водород способен диффундировать сквозь стенки стеклянного или металлического сосуда.

Химические свойства

При комнатной температуре химическая активность водорода низкая. Она значительно повышается при нагревании.

 

1. Взаимодействие с простыми веществами-неметаллами (кроме фосфора, кремния, инертных газов).

  • Водород реагирует с кислородом. При этом образуется вода:

2h3+O2=t2h3O.

 

Смесь водорода с кислородом или с воздухом взрывоопасна.

  • При освещении или нагревании идёт реакция с хлором, и образуется хлороводород:

h3+Cl2=hν2HCl.

 

Подобным образом водород реагирует и с другими галогенами: фтором, бромом, иодом.

  • Если водород пропускать над нагретой серой, то образуется сероводород:

h3+S=th3S.

  • В присутствии катализатора при повышенном давлении водород реагирует с азотом с образованием аммиака:

N2+3h3=t,p,k2Nh4.

 

Обрати внимание!

В реакциях с неметаллами водород является восстановителем.

 

2. Взаимодействие с простыми веществами-металлами.

При нагревании водород реагирует со щелочными и щелочноземельными металлами с образованием гидридов:

 

2Na+h3=t2NaH,

Ca+h3=tCah3.

 

Обрати внимание!

В реакциях с металлами водород является окислителем.

 

3. Взаимодействие со сложными веществами.

  • Водород способен реагировать с оксидами металлов (кроме оксидов щелочных и щелочноземельных металлов, бериллия, магния, алюминия):

WO3+3h3=tW+3h3O,

CuO+h3=tCu+h3O.

  • Водород реагирует с угарным газом с образованием метилового спирта:

CO+2h3→Ch4OH.

  • Водород вступает в реакции со многими органическими веществами.

Источники:

Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 137 с.

 

www.yaklass.ru

Проблемы водородной энергетики — лекции на ПостНауке

Есть другие способы избавления от углекислого газа и CO — это превращение их в жидкое топливо. На самом деле CO — это хороший химический продукт, который можно использовать для производства метанола и других полезных веществ. Его можно не выбрасывать, а вторично использовать. Вещества, которые можно получить в дальнейшем из CO, тоже могут являться источниками энергии. Метан можно разложить на чистый водород и жидкие топлива, которые можно использовать в других применениях. Это уменьшает выбросы парниковых газов и дает возможность дешево получать другие продукты. С углем ситуация сложнее, потому что природный уголь сам по себе достаточно загрязнен. Придется улавливать загрязняющие вещества, которые были в исходном угле.

Еще один из способов получения водорода — электролиз. Это гораздо более дорогой способ, чем получение из углеводородного сырья, но абсолютно экологически чистый. Разлагая воду, мы получаем отдельно водород, отдельно кислород. Минус в том, что мы тратим много электроэнергии на получение водорода. Закон сохранения энергии говорит, что мы больше энергии вложим в разложение воды, чем потом получим при его сжигании. Но большинство установок в городских условиях — это установки электролиза. Они оправданны, когда у вас есть излишки электроэнергии. В первую очередь если вы получаете электроэнергию из возобновляемых альтернативных источников энергии. Солнце светит только половину дня, зато светит сильно. Электроэнергию на ночь можно зарядить в аккумулятор, а из этих избытков получить водород.

Генерирующие электростанции, включая атомные, работают на постоянной мощности, и мощность выше, чем нужна потребителям, она рассчитана на максимальные нагрузки. Днем мы потребляем электроэнергии гораздо больше, чем ночью. Ночью мы спим, а станция продолжает вырабатывать то же количество энергии. Избытки надо куда-то утилизировать. И электроэнергию можно накапливать и использовать для получения водорода. Особенно это актуально для атомных электростанций, изменить мощность которых сложно, а мощность сама по себе огромна. На самом деле водород может быть условно бесплатным, потому что у нас бывает условно бесплатная электроэнергия, когда она избыточна и ее некуда девать.

Итак, может ли водород быть экологически чистым? Может быть, если получать его методом электролиза, используя избытки электроэнергии. Может ли быть дешевым водород, если у нас нет избытков электроэнергии? Он может получаться из углеводородных источников, но надо утилизировать продукты, которые одновременно с этим образуются.

Сейчас ученые вспомнили о еще одной технологии. Глядя на формулу метана (Ch5), можно понять, что, если очень сильно нагреть это вещество, оно разложится на уголь, или графит, или любую модификацию углерода и водород, никакого загрязнения CO2 мы не получим. Крекинг, то есть температурное разложение, сейчас активно используется. Полученный углерод можно использовать в различных производствах — в зависимости от того, в какой форме углерод образуется. Это может быть сажа — шинная промышленность; углерод высокой удельной поверхности другого типа — носитель для катализаторов. Главное, мы не выбросили углекислый газ в окружающую среду. Технология новая и не самая оптимальная, но отвечает на вопрос, можно ли, получая водород из углеводородов, избавиться от парниковых газов: можно.

Водород уже сейчас не очень дорогой продукт, его производят в крупнотоннажных масштабах. Водород используется, например, при получении маргарина. Маргарин — это обычное растительное масло, которое гидрируется, то есть обрабатывается водородом. Крупнотоннажное производство водорода — вещества для сельского хозяйства, в первую очередь азотные удобрения. Мы массово получаем аммиак (Nh4) — соединение азота с водородом. Без азотных удобрений почва быстро становится бесплодной, и азотных удобрений нет в природе, поэтому миллионы тонн аммиака ежегодно получают из водорода и азота.

Даже сейчас в локальных производствах водород — это необходимый продукт, производящийся крупнотоннажно. Если потребности в нем возрастут, есть большая вероятность, что он подешевеет по сравнению с нынешней ценой.

Хорошо, когда мы произвели водород и здесь же его используем: не надо транспортировать или хранить. Если мы говорим о водородном транспорте, водород надо донести до пользователя. Возникает основная проблема использования водорода сейчас: водород — это очень легкий и плохо сжижаемый газ. Сейчас приходится перевозить водород либо в химически связанном виде, либо в баллонах высокого давления, либо в жидком состоянии. Самый простой способ — это перевозка в баллоне высокого давления. Существуют легкие и надежные углепластиковые баллоны, которые не умеют сами по себе взрываться, а просто раскрываются, и они достаточно безопасны. В таких баллонах можно перевозить водород при давлении выше 700 атмосфер. Газ нужно сжать, и мы дополнительно тратим энергию, чтобы перевести его в сжатое состояние. Если правильно считать, сколько энергии мы получаем из водорода, надо вычитать эту энергию, а она достаточно большая. Зато можно хранить в таких баллонах бесконечно и использовать достаточно быстро.

postnauka.ru

Водород — Викицитатник

Водород в газоразрядной трубке

Водоро́д (лат. Hydrogenium; обозначается символом « H ») — химический элемент периодической системы с атомным номером 1, самый лёгкий из элементов периодической таблицы. Его одноатомная форма — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Все звёзды, кроме компактных, в основном состоят из водородной плазмы. Водород имеет три изотопа: 1H — протий, 2H — дейтерий и 3H — тритий (последний радиоактивен). Ядро самого распространённого изотопа, протия, состоит из одного только протона и не содержит нейтронов.

При стандартных температуре и давлении водород — бесцветный, нетоксичный двухатомный газ, не имеющий запаха и вкуса, с химической формулой H2, который в смеси с воздухом или кислородом горюч и взрывоопасен. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.

Водород в научной и научно-популярной литературе[править]

...можно думать, что водород воды (если она существует в кислотах как таковая) прилегает к молекуле кислорода, заключенного в окиси, и при этом все же остается около связанного с ним атома кислорода. В случае, если состояние обеих молекул кислорода было различным, то оно должно под влиянием водорода стать тождественным, а затем, при делении, молекула водорода без затруднения покинет прежний кислород, так как новый также полно насытит ее сродство. Такое предположение по меньшей мере вероятно так же, как и всякое другое, которое не основано ни на каком прямом эксперименте. Я далек от того, чтобы защищать его как доказанную истину; думаю все же, что оно довольно ясно обнаруживает недостаточность упрека, сделанного теории замещения.[2]

  — Александр Бутлеров, «Теоретические и экспериментальные работы по химии», 1851-1886

Атомы углерода и кислорода стремятся ко взаимному соединению и при этом образуют углекислоту, в которой на один атом углерода приходится два атома, кислорода (С02). Также атомы водорода (Н) стремятся соединиться с атомами кислорода и образуют воду (Н2О), где на два атома водорода один кислорода. Напротив, атомы углерода и водорода одарены сравнительно слабым притяжением друг к другу и потому, будучи соединены, при первой возможности стремятся каждый в свою сторону соединиться с кислородом, образуя углекислоту и воду. При этом соединении атомы, так же, как и эти шары, должны ударяться друг о друга. Этот удар, это столкновение частиц углерода и водорода с частицами кислорода и есть то, что мы называем горением. Как при ударе стали о кремень проявляются теплота и свет, так и при ударе частиц кислорода воздуха о частицы углерода и водорода, из которых состоит наш светильный газ или наш керосин, развиваются теплота и свет, наблюдаемые в их пламени. Всё различие состоит в том, что в первом случае мы видим движение, удар и сопровождающие его явления ― свет и теплоту; во втором же только видим эти явления, о существовании же столкновения заключаем из его последствий. В самом деле, до горения мы имеем углеводород (т. е. соединение углерода с водородом), светильный газ или керосин и кислород, после горения имеем углекислоту и воду. Следовательно, каждый атом углерода, водорода или их соединений находится по отношению к кислороду в положении шара С1 относительно шара О2. Как эти шары, они находятся в напряженном состоянии, представляют запас скрытой потенциальной энергии, которую мы и называем химическим сродством или химическим напряжением.[3]

  — Климент Тимирязев, «Растение как источник силы», 1875

Помнишь, я говорил вам не раз, что моя теория строения вещества предсказывает как совершенно необходимую вещь, что в состав современных металлов и металлоидов входят гелий, водород и еще третий, до сих пор не исследованный элемент, свойства которого я указывал. И что же? Почти все это теперь уже подтвердилось опытами и наблюдениями английских и американских ученых! Присутствие структурного водорода в атомах металлов указано английским астрофизиком Локьером путем спектроскопического исследования некоторых звезд, где металлические пары отчасти разложились от страшно высокой температуры; а гелий и еще какой-то новый неизвестный газ оказались постоянно выделяющимися из недавно открытого металла радия и потому должны присутствовать и в остальных металлах. Поэтому можно сказать с уверенностью, что через несколько лет пребывания здесь мои работы будут лишь запоздалыми пророчествами о таких предметах, которые сделаются общепризнанными.[4]

  — Николай Морозов, «Письма из Шлиссельбургской крепости», 1903

Всякое излучение, видимое или невидимое, представляет из себя некоторую потерю энергии; следовательно принцип относительности Эйнштейна нам говорит что масса какого нибудь тела, излучающего тепловые, видимые или ультра-фиолетовые лучи ― уменьшается; если мы следовательно предположив, что когда-то, давно, различные элементы, азот, кислород, медь, свинец, золото и т. д. образовались из соединения элементарных атомов водорода и гелия, то с тех пор происходило постоянное излучение энергии и масса этих элементов должна была уменьшиться; вот почему атомные веса различных элементов не равны точно целым числам, а имеют значения, близко лежащие к целым числам. Мы можем из атомного веса узнать историю происхождения элементов. Эта гипотеза происхождения элементов, построенная знаменитым французским физиком Ланжевеном, получила в этом году замечательное подтверждение в опытах английского физика Рутерфорда, которому удалось показать, что под влиянием х-лучей азот распадается на водород и гелий.[5]

  — Виктор Анри, «Современное научное мировоззрение», 1919

При описанных нами преобразованиях астрономических единиц вся материя не только перемещается (или перемешивается), но непрерывно простые тела превращаются в сложные и обратно. Я хочу сказать, что золото, свинец и другие элементы превращаются в водород и гелий, и обратно ― водород, гелий и другие простые тела, с малым атомным весом, ― в золото, серебро, железо, алюминий и т. д.[6]

  — Константин Циолковский, «Монизм Вселенной», 1931

Что же обнаружили Жансен и Локьер в спектре солнечных выступов? Прежде всего им обоим бросились в глаза яркие линии водорода: красная, зелено-голубая и синяя. Но, кроме этих трех линий, в спектре оказалась еще одна линия — желтая. Что значит эта линия, ни Жансен, ни Локьер никак не могли понять. Она расположена довольно близко от того места спектра, где должна была бы лежать желтая линия натрия. Близко, но не совсем в том месте, — значит, это не натрий. <...> В звездах происходит, по выражению физиков, ядерное горение водорода, а гелий — это зола, остающаяся после сгорания. Однако гелиевая зола сильно отличается от обычной.[7]

  — Матвей Бронштейн, «Солнечное вещество», 1936

Здесь следует уточнить возможную область частот, на которых можно пытаться установить интересующую нас радиосвязь. Моррисон и Коккони выдвинули весьма изящную идею, что такого рода связь, вероятнее всего, будут пытаться установить на волне 21 см. Хорошо известно, что это длина волны радиолинии водорода. Разумные существа, находящиеся на высоком уровне развития, должны проводить интенсивные исследования космоса именно на этой волне. Подобные исследования уже сейчас обогатили астрономическую науку рядом открытий первостепенного научного значения. Особенно следует подчеркнуть, что они будут неограниченно развиваться в дальнейшем, ибо успех таких исследований неразрывно связан с общим прогрессом радиофизики. Таким образом, особенно чувствительная приёмная аппаратура должна быть именно на этой волне. Кроме того, на этой волне должны проводиться длительные и систематические исследования различных объектов на небе, что значительно увеличивает вероятность обнаружения сигнала. Наконец, водород ― самый распространённый элемент во Вселенной, и поэтому его радиолиния является как бы природным эталоном частоты, эталоном, к которому с неизбежностью должна прийти всякая развивающаяся цивилизация.[8]

  — Иосиф Самуилович Шкловский, «Из истории развития радиоастрономии в СССР», 1960

По химическому составу звёзды, как правило, представляют собой водородные и гелиевые плазмы. (Плазмой называется ионизованный газ, в каждом элементе объема которого находится одинаковое количество электронов и положительных ионов.) Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0,3 атома железа. Относительное содержание других элементов еще меньше.[8]

  — Иосиф Самуилович Шкловский, «Вселенная, жизнь, разум», глава 2. «Основные характеристики звезд», 1962

Водород в «обычной» воде почти нацело состоит из протия. Кроме него во всякой воде есть тяжелый водород ― дейтерий Н2, его чаще обозначают символом D. Дейтерия в воде очень мало. На каждые 6700 атомов протия в среднем приходится только один атом дейтерия. Не следует думать, что это так уж мало. В природе часто малые причины вызывают большие последствия. Кроме протия и дейтерия, существует еще сверхтяжелый водород Н3. Его обычно называют тритием и обозначают символом Т.[9]

  — Игорь Петрянов-Соколов, «Самое необыкновенное вещество», 1965

Ограничусь лишь одним примером. Известно, что среди элементов водород ― это «двуликий Янус», он сочетает в себе свойства и металлов, и неметаллов. Но допустим, надо решить вопрос, где же его место ― в первой или седьмой группе периодической системы элементов? Тщательно проанализируйте свойства водорода, и вы придете к выводу, что он более галоген, нежели металл. Прибавьте к этому результаты применения методов сравнительного расчета <...> и вы придете к бесспорному выводу: хотя водород занимает особое положение и обладает рядом специфических свойств, его следует считать неполным аналогом фтора, а не собратом щелочных металлов. Поэтому правильнее всего помещать водород над фтором и ― по справедливости! ― одновременно (но в скобках) над литием. Говоря обо всем этом, я далек от мысли, что методы сравнительного расчёта представляют собой некую панацею, ибо область их применения не безгранична.[10]

  — Михаил Карапетьянц, «И мерить, и считать», 1966

Пожалуй, не стоит много говорить о роли катализаторов в современной химической технологии: в их присутствии проводится подавляющее большинство процессов. И важнейший среди них ― синтез аммиака из водорода и атмосферного азота. При этом водород добывают или из воды и метана по так называемой реакции конверсии, или расщепляя природные углеводороды по реакции, обратной реакции гидрирования. Синтетический аммиак незаменим в производстве азотных удобрений. Но водород нужен не только для получения аммиака. Превращение жидких растительных жиров в твердые заменители животного масла, преобразование твердых низкокачественных углей в жидкое топливо и многие другие процессы происходят с участием элементарного водорода. Выходит, что водород ― это пища и для человека, и для растений, и для машин…[11]

  — Вячеслав Жвирблис, «Водород», 1969

А вот изотопы водорода ― дейтерий и тритий ― позволяют изучать тончайшие механизмы химических и биохимических процессов. Эти изотопы водорода используют как «метки», потому что атомы дейтерия или трития сохраняют все химические свойства обычного легкого изотопа ― протия ― и способны подменять его в органических соединениях. Но дейтерий можно отличить от протия по массе, а тритий ― и по радиоактивности. Это позволяет проследить судьбу каждого фрагмента меченой молекулы.
Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции. Эта реакция начинается при десяти миллионах градусов и протекает за ничтожные доли секунды при взрыве термоядерной бомбы, причем выделяется гигантское, по масштабам Земли, количество энергии. «Водородную» бомбу иногда сравнивают с Солнцем.[11]

  — Вячеслав Жвирблис, «Водород», 1969

Литийорганические соединения применяют там же, где и магнийорганические (в реакциях Гриньяра), но соединения элемента № 3 ― более активные реагенты, чем соответствующие гриньяровские реактивы. В годы второй мировой войны стало стратегическим материалом одно соединение лития, известное еще в прошлом веке. Речь идет о гидриде лития ― бесцветных кристаллах, приобретающих при хранении голубоватую окраску. Из всех гидридов щелочных и щелочноземельных металлов гидрид лития ― самое устойчивое соединение. Однако, как и прочие гидриды, LiH бурно реагирует с водой. При этом образуются гидроокись лития и газообразный водород. Это соединение стало служить легким (оно действительно очень легкое ― плотность 0,776) и портативным источником водорода ― для заполнения аэростатов и спасательного снаряжения при авариях самолётов и судов в открытом море. Из килограмма гидрида лития получается 2,8 кубометра водорода…[12]

  — Геннадий Диогенов, «Литий», 1969

Для того чтобы смогли слиться ядра дейтерия и трития, нужна температура порядка 50 миллионов градусов. Но для того чтобы реакция пошла, нужно еще, чтобы атомы столкнулись. Вероятность такого столкновения (и последующего слияния) тем больше, чем плотнее «упакованы» атомы в веществе. Расчеты показали, что это возможно только в том случае, если вещество находится хотя бы в жидком состоянии. А изотопы водорода становятся жидкостями лишь при температурах, близких к абсолютному нулю. Итак, с одной стороны, необходимы сверхвысокие температуры, а с другой ― сверхнизкие. И это ― в одном и том же веществе, в одном и том же физическом теле! Водородная бомба стала возможной только благодаря разновидности гидрида лития ― дейтериду лития-6. Это соединение тяжелого изотопа водорода ― дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 важен по двум причинам: он ― твердое вещество и позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах, и, кроме того, второй его компонент ― литий-6 ― это сырье для получения самого дефицитного изотопа водорода ― трития. Собственно, Li-6 ― единственный промышленный источник получения трития. Нейтроны, необходимые для этой ядерной реакции, дает взрыв атомного «капсюля» водородной бомбы, он же создает условия (температуру порядка 50 миллионов градусов) для реакции термоядерного синтеза. В США идею использовать дейтерид лития-6 первым предложил доктор Э. Теллер. Но, по-видимому, советские ученые пришли к этой идее раньше: ведь не случайно первая термоядерная бомба в Советском Союзе была взорвана почти на полгода раньше, чем в США, и тем самым был положен конец американской политике ядерного и термоядерного шантажа.[12]

  — Геннадий Диогенов, «Литий», 1969

Самая главная проблема, которую мы должны в результате фундаментальных работ решить, ― это увеличение срока службы топливных элементов и их удешевление. А стоимость определяется тем, какой металл используется, как получается водород и какой топливный элемент применяется. Думаю, институты Академии наук располагают довольно большими возможностями для решения всех этих задач. Я полностью согласен с тем, что здесь говорилось о безопасности водородной энергетики. Но почти половина программы направлена на то, чтобы водород получать прямо там, где он будет использоваться. Тогда проблем хранения водорода в баллонах и транспортировки просто не будет. В Институте высокотемпературной электрохимии созданы высокотемпературные топливные элементы на метане или природном газе, который прямо внутри системы преобразуется в водород. И, как меня уверяют, безопасность и мощность подобных установок примерно такая же, как у газовой плиты, которая работает во многих наших квартирах. Так что я бы не стал слишком переоценивать опасность применения водородной энергетики. Если говорить о конкретных задачах, которые мы ставим на ближайшее время, то это ― автономная водородная энергетика.[13]

  — Геннадий Месяц, Михаил Прохоров, «Водородная энергетика и топливные элементы», 2003

Однако покой Бетельгейзе обманчив. Этот гигант изъеден изнутри старостью; он превратился в пылающую оболочку, под которой простираются обширные пустоты. Сейчас Бетельгейзе на три четверти состоит из водородного марева, которое в сотни тысяч раз разреженнее, чем воздух в наших легких и разогрето едва ли сильнее, чем галогеновая лампа. Оставшаяся четверть ― очень плотный и раскаленный шар ― своего рода бомба, которая непременно взорвется и разметает оболочку. Время взрыва неизвестно, может быть, до него сто тысяч лет, может, гораздо меньше. И тогда над «левым плечом» Ориона вспыхнет факел, который будет светить ярче целой галактики.[14]

  — Александр Грудинкин, «Под знаком Эта Карины», 2009

Водород в публицистике и беллетристике[править]

В тот день случилось невозможное. Около Гостиного двора, в Петербурге, продаются всегда сотни детских шаров. В этот же день не оказалось ни одного. Товарищи нигде не могли найти шара. Наконец они добыли один у ребенка, но шар был старый и не летал. Тогда товарищи мои кинулись в оптический магазин, приобрели аппарат для добывания водорода и наполнили им шар; но он тем не менее упорно отказывался подняться: водород не был просушен. Время уходило. Тогда одна дама привязала шар к своему зонтику и, держа последний высоко над головой, начала ходить взад и вперед по тротуару, под забором нашего двора. Но я ничего не видел: забор был очень высокий, а дама ― очень маленькая. Как оказалось потом, случай с воздушным шаром вышел очень кстати. Когда моя прогулка кончилась, пролётка проехала по тем улицам, по которым она должна была проскакать в случае моего побега.[15]

  — Пётр Кропоткин, «Записки революционера», 1898

Необходимость водорода для водородной бомбы очевидна только на словесном уровне. А на уровне физики этот элемент в водородной бомбе вообще не используется. Водород ― самый лёгкий элемент, но не самый склонный к слиянию. Условия, в которых слияние может идти, сильно различаются для разных ядер, и достижимее всего слияние не самого водорода, а его изотопов ― дейтерия и трития, D и T. Дейтерий, хоть и в малом количестве, подмешан ко всякому природному водороду и выделять его в чистом виде научились еще в довоенные годы. Потому-то в постановлении правительства в июне 1948 года говорилось о «горении дейтерия». Трития в природе практически нет вовсе, и получать его очень трудно, точнее, дорого. К тому же тритий ― радиоактивен и, уже добытый, распадается со временем. Свойства дейтерия, и тем более трития, были недостаточно изучены, чтобы проводить точные расчеты. Однако точно было известно, что дейтерий и тритий ― газы. Как же из газа сделать слой, окружающий центральный атомный шар в Слойке? Трудно.[17]

  — Геннадий Горелик. «Андрей Сахаров. Наука и свобода», 2004

Водород в поэзии[править]

Есть величайшие мгновенья;
Они близ нас всегда вокруг:
То разных тел соединенья,
Порой ― неспешно, чаще ― вдруг.
Они в природе возникают,
Когда условья есть к тому;
Но их и химики свершают
Вослед пытливому уму.
Их суть, их правда не случайна;
Предвидеть можно их вперед,
Но неизведанная тайна,
Потемки, ― самый переход.
Где, в чём охота кислороду,
Как водород уразумел
Мгновенно обращаться в воду,
Пропасть, чтоб быть у новых дел...[18]

  — Константин Случевский, «Мой «Дневник» аналогий, тождеств, параллелей, оставленный в столе» (из цикла «Загробные песни»), 1902

Еще не кончен путь печальный,
А сердце, снова налегке,
Откалывает пляс охальный
В обросшем мясом костяке.
Ну что ж, стремись навстречу бури:
Да здравствует распад, разброд!
Отдай телурию телурий
И водороду ― водород.[19]

  — Бенедикт Лившиц, «Еще не кончен путь печальный...», 1927

Есть просто газ легчайший ― водород,
есть просто кислород, а вместе это ―
июньский дождь от всех своих щедрот,
сентябрьские туманы на рассветах.[21]

  — Степан Щипачёв, «Читая Менделеева», 1948

«Ах, бросьте вы жесты эти!
Одиннадцать водородных бомб ―
И кончится жизнь на планете!
Счернеет земной шар
В пепле огненных ливней!
Одиннадцать ― вот кошмар,
Поднявший черные бивни!
А вы вот сидите за кофе»
Вы можете пить! Есть!
Одиннадцать бомб ― катастрофа!!
Сделано десять.
Осталась одна… одна!!»
Студент вскочил и умчался. <...>
И только один Водород,
Свои озирая владенья,
Как призрачное виденье,
На Эверест взойдет,
Оттуда спустится в Татры,
На Рим пожелает ступить,
Зевая, осядет в театре,
Где слышалось: «Быть иль не быть?» ,
И страшным Небытием,
Словно безмолвное эхо,
Ответит, торжественно нем,
На жгучий вопрос человека. <...>
(Хоть губы сизы, как мел,
Прекрасен он, словно ангел:
Он будто возвысился в ранге!
Голос его звенел!)
«Ребята! Слух приготовь
Для вести особого рода:
Жизнь возродится вновь
Именно из водорода!
Пробьется она сквозь века!
Это ж достойно гимна!
Вот диалектика! А?
Из водорода! Именно!»[24]

  — Илья Сельвинский, «Всем! Всем! Всем!», 1957

О, наше время благородное!
Хочу поздравить всю страну ―
Не водородная, а всенародная
Летит ракета на Луну...[25]

  — Михаил Светлов, «Придем!», 1959

Так выгреби
из своего ядра
весь водород,
и докажи свой гений,
и преврати его
в горящий гелий,
и начинай меня сжигать с утра![26]

  — Семён Кирсанов, «Перед затмением» (из цикла «На былинных холмах), 1965

«От жажды умираю над ручьем».
Водоснабженцы чертыхались: «
Поклеп! Тут воды ни при чем!
Докажем ― сделаем анализ».
Вердикт гидрологов, врачей:
«Вода есть окись водорода,
И не опасен для народа
Сей оклеветанный ручей».[27]

  — Илья Эренбург, «Над стихами Вийона», 1966

Не за горами ранняя зима.
Рассеется туман, сгустится иней.
Один умрёт, другой сойдёт с ума,
как мотылёк в бесхозной паутине.
И человек вздыхает, замерев.
Давно ему грозит зима другая,
все дни его и годы нараспев
на музыку свою перелагая.
А из краев, где жаркий водород
шлёт луч на землю в реках и могилах,
глядит Господь ― жалеет, слёзы льёт,
одна беда ― помочь ему не в силах.

  — Бахыт Кенжеев, «Куда плывет громоздким кораблем...», 1990-е

С полсотни бочек на дворе с железной стружкой. И щипет аммиак нахальный,
поэтому все в масках. Кислота металл кусает за изнанку, виясь в трубе.
Есть водород, что чувствует опасность острее, чем Орфей в кольце вакханок.
И голый человек специалистам показывает схему на себе...

  — Алексей Парщиков, «Сельское кладбище» (из сборника «Дирижабли»), 2004
  1. ↑ Atomic weights of the elements 2009 (IUPAC Technical Report) — International Union of Pure and Applied Chemistry, 1960. — ISSN 0033-4545; 1365-3075; 0074-3925
  2. А.М.Бутлеров Сочинения в 3 томах. — М.: Издательство Акдемии Наук СССР, 1953-1958 гг.
  3. К.А.Тимирязев. «Жизнь растения» (по изданию 1919 года). — М.: Сельхозгиз, 1936 г.
  4. Н.А.Морозов. «Повести моей жизни». — М.: Наука, 1965 г.
  5. В. А. Анри. Современное научное мировоззрение. — М.: «Грядущая Россия», 1920 г.
  6. Циолковский К. Э. Ум и страсти. Воля вселенной. Неизвестные разумные силы. ― М.: МИП «Память», Российско-Американский Университет, 1993 г.
  7. М. П. Бронштейн «Солнечное вещество». — М.: Детиздат ЦК ВЛКСМ, 1936 г.
  8. 8,08,1 И. С. Шкловский, «Вселенная, жизнь, разум» (сборник). Издание шестое, дополненное под ред. Н. С. Кардашева и В. И. Мороза. — М.: «Наука», 1987 г. — 320 с.
  9. И. В. Петрянов-Соколов. Самое необыкновенное вещество. — М.: «Химия и жизнь» № 3, 1965 г.
  10. М. Карапетьянц. «И мерить, и считать». — М.: «Химия и жизнь», № 5, 1966 г.
  11. 11,011,1 В. Е. Жвирблис. «Водород». — М.: «Химия и жизнь», № 9, 1969 г.
  12. 12,012,1 Г. Диогенов. «Литий». — М.: «Химия и жизнь», № 3, 1969 г.
  13. Г. А. Месяц, М. Д. Прохоров. «Водородная энергетика и топливные элементы». ― М.: «Вестник РАН», том 74, № 7, 2004 г.
  14. Александр Грудинкин. «Под знаком Эта Карины». — М.: «Знание — сила», № 2, 2009 г.
  15. Кропоткин П. А. Век ожидания. Сборник статей. — М.-Л., 1925 г.
  16. А. Беляев. Избранные романы. — М.: Правда, 1987 г.
  17. Геннадий Горелик. «Андрей Сахаров. Наука и свобода». — М.: Вагриус, 2004 г.
  18. К. Случевский. Стихотворения и поэмы. Новая библиотека поэта. Большая серия. — Спб.: Академический проект, 2004 г.
  19. Б. Лившиц. «Полутороглазый стрелец». — Л.: Советский писатель, 1989 г.
  20. Э. Багрицкий. Стихотворения и поэмы. Библиотека поэта. М.: Советский писатель, 1964 г.
  21. С. П. Щипачёв. Собрание сочинений в трёх томах. — М., 1976-1977 г.
  22. Г. Иванов. Стихотворения. Новая библиотека поэта. — СПб.: Академический проект, 2005 г.
  23. ↑ Шаламов В.Т. Собрание сочинений. — Москва, Художественная литература Вагриус, 1998 г.
  24. И. Сельвинский. Избранные произведения. Библиотека поэта. Изд. второе. — Л.: Советский писатель, 1972 г.
  25. М. Светлов. Стихотворения и поэмы. Библиотека поэта. 2-е изд. — Л.: Советский писатель, 1966 г.
  26. С. Кирсанов, Стихотворения и поэмы. Новая библиотека поэта. Большая серия. — СПб.: Академический проект, 2006 г.
  27. И. Эренбург. Стихотворения и поэмы. Новая библиотека поэ

ru.wikiquote.org

Водород как химический элемент — урок. Химия, 8–9 класс.

Водород — химический элемент № \(1\) периодической системы.

 

Атом водорода — самый простой по строению, самый лёгкий из атомов всех известных элементов. В его ядре находится один протон, а в электронной оболочке — всего один электрон.

 

 

Химический элемент водород представлен тремя изотопами: h21 — протий (основной), h22 — дейтерий (D), h23 — тритий (T). Ядро протия не содержит нейтронов, в ядре дейтерия один нейтрон, а в ядре трития их два. Поэтому изотопы водорода различаются массами.

 

Водород обычно помещают и в \(IА\) группу (к щелочным металлам), и в \(VIIA\) группу (к галогенам).

 

Особое положение водорода связано со строением его электронной оболочки: в атоме один валентный электрон (как у щелочных металлов), а для завершения внешнего электронного слоя не хватает одного электрона (как атомам галогенов).

 

В химических реакциях атом водорода может отдавать или принимать электрон, поэтому проявляет в соединениях и положительную, и отрицательную степени окисления:

 

Н0−e_→Н+1,

 

Н0+e_→Н−1.

 

В ряду электроотрицательности место водорода — между металлами и неметаллами:

 

 .

 

Степень окисления \(+1\) водород проявляет в соединениях с более электроотрицательными неметаллами (Nh4+1,H+1Cl), а  \(–1\) — в соединениях с металлами, кремнием и бором (NaH−1,Sih5−1).

 

Водород — самый распространённый элемент во Вселенной. Из атомов этого элемента в недрах звёзд синтезируются все другие элементы.

 

Среди элементов земной коры водород по распространённости занимает девятое место. Он входит в состав воды, нефти, природного газа, а также содержится во всех живых организмах.

Свободного водорода в атмосфере Земли очень мало.

Источники:

Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 136 с.

 

www.yaklass.ru

10 самых тяжёлых газов - Коллектив Авторов "EugeneBo" — LiveJournal

? LiveJournal
  • Main
  • Ratings
  • Interesting
  • 🏠#ISTAYHOME
  • Disable ads
Login

eugenebo.livejournal.com

20 фактов о водороде. — Все о Водороде и Водородной воде

  1. Водород занимает первое место в периодической системе  химических элементов  Менделеева и обозначается символом H.
  2. Водород — самый маленький и распространённый элемент во Вселенной. На его долю приходится около 88,6 % всех атомов. Таким образом, водород — основная составная часть звёзд и межзвёздного газа.
  3. В больших количествах водород обнаружен в звездах и планетах типа «газовый гигант». Он играет ключевую роль в протекающих в звездах реакциях синтеза.
  4. Простое вещество водород — h3 — самый лёгкий газ, он легче воздуха в 14,5 раз.
  5. При комнатной температуре и нормальном давлении водород в виде газа не имеет вкуса, цвета и запаха.
  6. Свободный водород h3 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.
  7. А. Л. Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — «вода» и γεννάω — «рождаю») — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с «кислородом» М. В. Ломоносова
  8. В 2007 году японские ученые сделали открытие: молекулярный водород имеет высокий терапевтический потенциал для организма человека.
  9. Водород оздоравливает организм на клеточном уровне, повышает иммунитет и жизненный тонус организма, оказывает профилактическое и лечебное действие при множестве самых различных заболеваний, включая хронические, омолаживает организм и препятствует преждевременному старению.
  10. На сегодняшний день о пользе  водороде для организма человека  написано  более чем 600 научных и медицинских статей.
  11. Наиболее простой и эффективный способ употребления водорода в лечебно-профилактических целях — в виде воды, обогащенной водородом.
  12. Водородная вода полезна и безопасна для людей любого возраста и не имеет побочных эффектов. Она имеет нейтральный либо слабощелочной pH и высоко отрицательный ОВП, являясь идеальным напитком для употребления человеком.
  13. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения, проникая во все клетки и ткани тела человека.
  14. Водород — самый мощный антиоксидант.  В результате ликвидации  водородом вредных свободных радикалов в организме человека образуется вода. Другие антиоксиданты, при аналогичной реакции, образуют вредные побочные отходы.
  15. Водород является одним из двух элементов, из которых состоит вода (h3O). Каждая молекула воды содержит два атома водорода и один атом кислорода.
  16. Для увеличения концентрации молекулярного водорода в воде используют метод электролиза, т.е. разложение воды на водород и кислород под действием постоянного тока. Такая вода становится лечебной, обладает терапевтическим потенциалом. Уже существуют аппараты, производящие воду, обогащенную водородом, в домашних условиях.
  17. Под давлением и при сильном холоде (-252,87 градусах по Цельсию) водород переходит в жидкое состояние. Хранимый в этом состоянии водород занимает меньше места, чем в своей «нормальной» газообразной форме. Жидкий водород используется, в том числе, и в качестве ракетного топлива.
  18. При сверхвысоком давлении водород переходит в твердое состояние и становится металлическим водородом. В этом направлении ведутся научные исследования.
  19. Водород используется в качестве альтернативного топлива для транспорта. Химическая энергия водорода высвобождается при его сжигании способом, подобным тому, который применяется в традиционных двигателях внутреннего сгорания. На его основе также создаются топливные элементы, в которых задействован процесс образования воды и электричества путем осуществления химической реакции водорода с кислородом.
  20. Водород зарегистрирован в качестве пищевой добавки E949 (упаковочный газ, класс «Прочие»). Входит в список пищевых добавок, допустимых к применению в пищевой промышленности Российской Федерации в качестве вспомогательного средства для производства пищевой продукции.

Читайте статью «Водород: каков механизм положительного воздействия на организм человека» и заходите на сайт www.h3miraclewater-russia.ru для получения более подробной информации о водородных аппаратах и водородной воде.

Если Вам понравилась статья, подписывайтесь на блог и нажимайте на кнопку «Нравится».

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка...

h2miraclewater.net

Ответы Mail.ru: Укажите, где о водороде говорится как о простом веществе, а где

как о простом веществе говорится, когда: а) водород входит в состав большинства органических соединений и в) водородом заполняют воздушные шары; как о химическом элементе: б) водород - самый легкий газ и г) совсем уж сплошная химия - Сh5 метан - содержит 4 атома водорода!

а и г химический элемент б и в вещество

а. г -элемент б, в -соответственно

а. г -элемент б, в - вещество

touch.otvet.mail.ru

Жидкий водород — Википедия

Жи́дкий водоро́д (ЖВ, жh3, жH2, Lh3, LH2) — жидкое агрегатное состояние водорода, с низкой плотностью − 0,07 г/см³, и криогенными свойствами с точкой замерзания 14,01 K (−259,14 °C) и точкой кипения 20,28 K (−252,87 °C)[1]. Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4—75 %. Спиновое соотношение изомеров в жидком водороде[en] составляет: 99,79 % — параводород; 0,21 % — ортоводород[2]. Коэффициент расширения[en] водорода при смене агрегатного состояния на газообразное при комнатной температуре составляет 848:1.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объёма. После сжижения жидкий водород хранится в термически изолированных контейнерах под давлением. Жидкий водород используется в промышленности (в качестве формы хранения газа) и в космонавтике (в качестве ракетного топлива).

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским учёным Вильямом Калленом[3], Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовал кондиционер в 1851 году[4][5], Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения[6] в 1876 году. В 1885 году польский физик и химик Зигмунд Вро́блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервые водород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, сосуда Дьюара. Первый синтез устойчивого изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Водород при комнатной температуре состоит на 75 % из спинового изомера, ортоводорода. После производства жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать спонтанной экзотермической реакции его превращения, приводящей к сильному самопроизвольному испарению полученного жидкого водорода. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путём использования урановых или никелевых добавок[7].

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные проекты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например DeepC[en] или BMW h3R[en]). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только дорабатывать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объёмной плотности энергии для горения требуется больший объём водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества[править | править код]

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с кислородом в воздухе является вода, но в реальности — как и в случае с обычными ископаемыми энергоносителями — из-за наличия в воздухе молекул азота при его горении образуется также незначительное количество оксидов этого газа. В качестве топлива для транспортных средств, эксплуатируемых на открытом воздухе, водород при авариях и протечках не скапливается на месте, а уходит вверх, в атмосферу, что снижает пожароопасность.

Препятствия[править | править код]

Один литр «ЖВ» весит всего 0,07 кг. То есть его удельная плотность составляет 70,99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные теплоизолированные ёмкости и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с ёмкостями с тепловой изоляцией его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день[8]). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом («Водородная безопасность») — он достаточно холоден для сжижения воздуха, что взрывоопасно. Жидкий водород при атмосферном давлении имеет очень узкий температурный диапазон стабильности - всего 7 градусов Цельсия, что создает определенные трудности при хранении.

Жидкий водород является распространенным компонентом ракетного топлива, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателей на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H2/O2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульса двигателя за счет уменьшения молекулярного веса, это ещё сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования ЖВ в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель («Дельта-4»), которая целиком является водородной ракетой. В основном ЖВ используется либо на верхних ступенях ракет, либо на разгонных блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы ЖВ.

Водород с разными окислителями[править | править код]

Данные приводятся на основании[9] таблиц, опубликованных в США в рамках проекта сбора термодинамических данных «JANAF» (англ. Joint Army Navy Air Force, «Сборник ВМС и ВВС армии США»), которые широко используются в этих целях. Изначально вычисления производились компанией «Рокетдайн».[10] При этом делались предположения, что имеет место адиабатическое сгорание, изоэнтропийное расширение в одном направлении и имеет место смещение равновесного состояния. Кроме варианта использования водорода в качестве топлива, приводятся варианты с использованием водорода в качестве рабочего тела, что объясняется его небольшим молекулярным весом. Все данные рассчитаны для давления в камере сгорания («КС»), равного 68,05 атмосфер. Последняя строка таблицы содержит данные для газообразных водорода и кислорода.

Оптимальное расширение от 68.05 атм до условий: поверхности Земли (1 атм) вакуума (0 атм, расширение сопла 40:1)
Окислитель Топливо Комментарий Ve r Tc d C* Ve r Tc d C*
жO2 H2 распространено 3816 4.13 2740 0.29 2416 4462 4.83 2978 0.32 2386
H2-Be 49/51 4498 0.87 2558 0.23 2833 5295 0.91 2589 0.24 2850
CH4/H2 92.6/7.4 3126 3.36 3245 0.71 1920 3719 3.63 3287 0.72 1897
F2 H2 4036 7.94 3689 0.46 2556 4697 9.74 3985 0.52 2530
H2-Li 65.2/34.0 4256 0.96 1830 0.19 2680
H2-Li 60.7/39.3 5050 1.08 1974 0.21 2656
OF2 H2 4014 5.92 3311 0.39 2542 4679 7.37 3587 0.44 2499
F2/O2 30/70 H2 3871 4.80 2954 0.32 2453 4520 5.70 3195 0.36 2417
O2 H2 3997 3.29 2576 - 2550 4485 3.92 2862 - 2519

при этом «Ve» является той же единицей, что и удельный импульс, но приведена к размерности скорости [Н*сек/кг], а «C*» вычисляется путём умножения давления в камере сгорания на коэффициент расширения площади сопла и последующего деления на массовый расход топлива и окислителя, что дает приращение скорости на единицу массы.

Жидкий водород довольно опасен для человека. Попадание ЖВ на кожу может вызвать обморожение, а вдыхание паров привести к отёку легких.

  1. ↑ IPTS-1968 (en)
  2. ↑ Жидкий воздух/водород (en)
  3. ↑ Уильям Каллен, «О производстве холода, произведенного при испарении жидкостей и некоторые другие способы получения холода», в «Essays and Observations Physical and Literary Read Before a Society in Edinburgh and Published by Them, II», (Эдинбург, 1756) (en)
  4. ↑ США: 1851 Джон Гори (en)
  5. ↑ США: 1851 Патент 8080 (en)
  6. ↑ НАСА: Водород в течение XIX века (en)
  7. ↑ Преобразование водорода «Орто-Пара». Стр. 13 Архивировано 16 декабря 2008 года. (en)
  8. ↑ Водород в качестве альтернативного топлива Архивировано 8 августа 2008 года. (en)
  9. NIST-JANAF Thermochemical Tables 2 Volume-Set, (Journal of Physical and Chemical Reference Data Monographs), Hardcover: 1951 pp, Publisher: American Institute of Physics; 4th edition (1 августа 1998), Language: English, ISBN 1-56396-831-2, ISBN 978-1-56396-831-0
  10. Modern Engineering for Design of Liquid-Propellant Rocket Engines, (Progress in Astronautics and Aeronautics), Huzel and Huang, Rocketdyne division of Rockwell International

ru.wikipedia.org


Смотрите также



© 2009-: Каталог автоинструкторов России.
Карта сайта, XML.